271 lines
6.9 KiB
JavaScript
271 lines
6.9 KiB
JavaScript
'use strict'
|
|
/*
|
|
Open Rowing Monitor, https://github.com/laberning/openrowingmonitor
|
|
|
|
The TSLinearSeries is a datatype that represents a Quadratic Series. It allows
|
|
values to be retrieved (like a FiFo buffer, or Queue) but it also includes
|
|
a Theil-Sen Quadratic Regressor to determine the coefficients of this dataseries.
|
|
|
|
At creation its length is determined. After it is filled, the oldest will be pushed
|
|
out of the queue) automatically.
|
|
|
|
A key constraint is to prevent heavy calculations at the end (due to large
|
|
array based curve fitting), which might be performed on a Pi zero
|
|
|
|
The Theil-Senn implementation uses concepts that are described here:
|
|
https://stats.stackexchange.com/questions/317777/theil-sen-estimator-for-polynomial,
|
|
|
|
The determination of the coefficients is based on the math descirbed here:
|
|
https://www.quora.com/How-do-I-find-a-quadratic-equation-from-points/answer/Robert-Paxson,
|
|
https://www.physicsforums.com/threads/quadratic-equation-from-3-points.404174/
|
|
*/
|
|
|
|
import { createSeries } from './Series.js'
|
|
import { createTSLinearSeries } from './FullTSLinearSeries.js'
|
|
|
|
import loglevel from 'loglevel'
|
|
const log = loglevel.getLogger('RowingEngine')
|
|
|
|
function createTSQuadraticSeries (maxSeriesLength = 0) {
|
|
const X = createSeries(maxSeriesLength)
|
|
const Y = createSeries(maxSeriesLength)
|
|
const A = []
|
|
let _A = 0
|
|
let _B = 0
|
|
let _C = 0
|
|
|
|
function push (x, y) {
|
|
const linearResidu = createTSLinearSeries(maxSeriesLength)
|
|
|
|
X.push(x)
|
|
Y.push(y)
|
|
|
|
if (maxSeriesLength > 0 && A.length >= maxSeriesLength) {
|
|
// The maximum of the array has been reached, we have to create room
|
|
// in the 2D array by removing the first row from the A-table
|
|
A.shift()
|
|
}
|
|
|
|
// Invariant: the indices of the X and Y array now match up with the
|
|
// row numbers of the A array. So, the A of (X[0],Y[0]) and (X[1],Y[1]
|
|
// will be stored in A[0][.].
|
|
|
|
// Add an empty array at the end to store futurs results for the most recent points
|
|
A.push([])
|
|
|
|
// Calculate the coefficients of this new point
|
|
if (X.length() > 2) {
|
|
// There are at least two points in the X and Y arrays, so let's add the new datapoint
|
|
let i = 0
|
|
while (i < X.length() - 2) {
|
|
A[X.length() - 1].push(calculateA(i, X.length() - 1))
|
|
i++
|
|
}
|
|
_A = matrixMedian(A)
|
|
|
|
i = 0
|
|
linearResidu.reset()
|
|
while (i < X.length() - 1) {
|
|
linearResidu.push(X.get(i), Y.get(i) - (_A * Math.pow(X.get(i), 2)))
|
|
i++
|
|
}
|
|
_B = linearResidu.coefficientA()
|
|
_C = linearResidu.coefficientB()
|
|
} else {
|
|
_A = 0
|
|
_B = 0
|
|
_C = 0
|
|
}
|
|
}
|
|
|
|
function firstDerivativeAtPosition (position) {
|
|
if (X.length() > 2 && position < X.length()) {
|
|
return ((_A * 2 * X.get(position)) + _B)
|
|
} else {
|
|
return 0
|
|
}
|
|
}
|
|
|
|
function secondDerivativeAtPosition (position) {
|
|
if (X.length() > 2 && position < X.length()) {
|
|
return (_A * 2)
|
|
} else {
|
|
return 0
|
|
}
|
|
}
|
|
|
|
function slope (x) {
|
|
if (X.length() > 2) {
|
|
return ((_A * 2 * x) + _B)
|
|
} else {
|
|
return 0
|
|
}
|
|
}
|
|
|
|
function coefficientA () {
|
|
// For testing purposses only!
|
|
return _A
|
|
}
|
|
|
|
function coefficientB () {
|
|
// For testing purposses only!
|
|
return _B
|
|
}
|
|
|
|
function coefficientC () {
|
|
// For testing purposses only!
|
|
return _C
|
|
}
|
|
|
|
function intercept () {
|
|
return coefficientC()
|
|
}
|
|
|
|
function length () {
|
|
return X.length()
|
|
}
|
|
|
|
function goodnessOfFit () {
|
|
// This function returns the R^2 as a goodness of fit indicator
|
|
// ToDo: calculate the goodness of fit when called
|
|
if (X.length() >= 2) {
|
|
// return _goodnessOfFit
|
|
return 1
|
|
} else {
|
|
return 0
|
|
}
|
|
}
|
|
|
|
function projectX (x) {
|
|
const _C = coefficientC()
|
|
if (X.length() > 2) {
|
|
return ((_A * x * x) + (_B * x) + _C)
|
|
} else {
|
|
return 0
|
|
}
|
|
}
|
|
|
|
function numberOfXValuesAbove (testedValue) {
|
|
return X.numberOfValuesAbove(testedValue)
|
|
}
|
|
|
|
function numberOfXValuesEqualOrBelow (testedValue) {
|
|
return X.numberOfValuesEqualOrBelow(testedValue)
|
|
}
|
|
|
|
function numberOfYValuesAbove (testedValue) {
|
|
return Y.numberOfValuesAbove(testedValue)
|
|
}
|
|
|
|
function numberOfYValuesEqualOrBelow (testedValue) {
|
|
return Y.numberOfValuesEqualOrBelow(testedValue)
|
|
}
|
|
|
|
function xAtSeriesBegin () {
|
|
return X.atSeriesBegin()
|
|
}
|
|
|
|
function xAtSeriesEnd () {
|
|
return X.atSeriesEnd()
|
|
}
|
|
|
|
function xAtPosition (position) {
|
|
return X.get(position)
|
|
}
|
|
|
|
function yAtSeriesBegin () {
|
|
return Y.atSeriesBegin()
|
|
}
|
|
|
|
function yAtSeriesEnd () {
|
|
return Y.atSeriesEnd()
|
|
}
|
|
|
|
function yAtPosition (position) {
|
|
return Y.get(position)
|
|
}
|
|
|
|
function xSum () {
|
|
return X.sum()
|
|
}
|
|
|
|
function ySum () {
|
|
return Y.sum()
|
|
}
|
|
|
|
function xSeries () {
|
|
return X.series()
|
|
}
|
|
|
|
function ySeries () {
|
|
return Y.series()
|
|
}
|
|
|
|
function calculateA (pointOne, pointThree) {
|
|
if ((pointOne + 1) < pointThree && X.get(pointOne) !== X.get(pointThree)) {
|
|
const results = createSeries(maxSeriesLength)
|
|
let pointTwo = pointOne + 1
|
|
while (pointOne < pointTwo && pointTwo < pointThree && X.get(pointOne) !== X.get(pointTwo) && X.get(pointTwo) !== X.get(pointThree)) {
|
|
// For the underlying math, see https://www.quora.com/How-do-I-find-a-quadratic-equation-from-points/answer/Robert-Paxson
|
|
results.push((X.get(pointOne) * (Y.get(pointThree) - Y.get(pointTwo)) + Y.get(pointOne) * (X.get(pointTwo) - X.get(pointThree)) + (X.get(pointThree) * Y.get(pointTwo) - X.get(pointTwo) * Y.get(pointThree))) / ((X.get(pointOne) - X.get(pointTwo)) * (X.get(pointOne) - X.get(pointThree)) * (X.get(pointTwo) - X.get(pointThree))))
|
|
pointTwo += 1
|
|
}
|
|
return results.median()
|
|
} else {
|
|
log.error('TS Quadratic Regressor, Division by zero prevented in CalculateA!')
|
|
return 0
|
|
}
|
|
}
|
|
|
|
function matrixMedian (inputMatrix) {
|
|
if (inputMatrix.length > 1) {
|
|
const sortedArray = [...inputMatrix.flat()].sort((a, b) => a - b)
|
|
const mid = Math.floor(sortedArray.length / 2)
|
|
return (sortedArray.length % 2 !== 0 ? sortedArray[mid] : ((sortedArray[mid - 1] + sortedArray[mid]) / 2))
|
|
} else {
|
|
log.error('TS Quadratic Regressor, Median calculation on empty matrix attempted!')
|
|
return 0
|
|
}
|
|
}
|
|
|
|
function reset () {
|
|
X.reset()
|
|
Y.reset()
|
|
A.splice(0, A.length)
|
|
_A = 0
|
|
_B = 0
|
|
_C = 0
|
|
}
|
|
|
|
return {
|
|
push,
|
|
firstDerivativeAtPosition,
|
|
secondDerivativeAtPosition,
|
|
slope,
|
|
coefficientA,
|
|
coefficientB,
|
|
coefficientC,
|
|
intercept,
|
|
length,
|
|
goodnessOfFit,
|
|
projectX,
|
|
numberOfXValuesAbove,
|
|
numberOfXValuesEqualOrBelow,
|
|
numberOfYValuesAbove,
|
|
numberOfYValuesEqualOrBelow,
|
|
xAtSeriesBegin,
|
|
xAtSeriesEnd,
|
|
xAtPosition,
|
|
yAtSeriesBegin,
|
|
yAtSeriesEnd,
|
|
yAtPosition,
|
|
xSum,
|
|
ySum,
|
|
xSeries,
|
|
ySeries,
|
|
reset
|
|
}
|
|
}
|
|
|
|
export { createTSQuadraticSeries }
|