241 lines
5.5 KiB
JavaScript
241 lines
5.5 KiB
JavaScript
'use strict'
|
|
/*
|
|
Open Rowing Monitor, https://github.com/laberning/openrowingmonitor
|
|
|
|
The TSLinearSeries is a datatype that represents a Linear Series. It allows
|
|
values to be retrieved (like a FiFo buffer, or Queue) but it also includes
|
|
a Theil-Sen estimator Linear Regressor to determine the slope of this timeseries.
|
|
|
|
At creation its length is determined. After it is filled, the oldest will be pushed
|
|
out of the queue) automatically.
|
|
|
|
A key constraint is to prevent heavy calculations at the end (due to large
|
|
array based curve fitting), which might happen on a Pi zero
|
|
|
|
This implementation uses concepts that are described here:
|
|
https://en.wikipedia.org/wiki/Theil%E2%80%93Sen_estimator
|
|
|
|
The array is ordered such that x[0] is the oldest, and x[x.length-1] is the youngest
|
|
*/
|
|
|
|
import { createSeries } from './Series.js'
|
|
import { createLabelledBinarySearchTree } from './BinarySearchTree.js'
|
|
|
|
import loglevel from 'loglevel'
|
|
const log = loglevel.getLogger('RowingEngine')
|
|
|
|
function createTSLinearSeries (maxSeriesLength = 0) {
|
|
const X = createSeries(maxSeriesLength)
|
|
const Y = createSeries(maxSeriesLength)
|
|
const A = createLabelledBinarySearchTree()
|
|
|
|
let _A = 0
|
|
let _B = 0
|
|
|
|
function push (x, y) {
|
|
// Invariant: A contains all a's (as in the general formula y = a * x^2 + b * x + c)
|
|
// Where the a's are labeled in the Binary Search Tree with their xi when they BEGIN in the point (xi, yi)
|
|
if (maxSeriesLength > 0 && X.length() >= maxSeriesLength) {
|
|
// The maximum of the array has been reached, so when pushing the x,y the array gets shifted,
|
|
// thus we have to remove the a's belonging to the current position X0 as well before this value is trashed
|
|
A.remove(X.get(0))
|
|
}
|
|
|
|
X.push(x)
|
|
Y.push(y)
|
|
|
|
// Calculate all the slopes of the newly added point
|
|
if (X.length() > 1) {
|
|
// There are at least two points in the X and Y arrays, so let's add the new datapoint
|
|
let i = 0
|
|
while (i < X.length() - 1) {
|
|
A.push(X.get(i), calculateSlope(i, X.length() - 1))
|
|
i++
|
|
}
|
|
}
|
|
|
|
// Calculate the median of the slopes
|
|
if (X.length() > 1) {
|
|
_A = A.median()
|
|
} else {
|
|
_A = 0
|
|
}
|
|
|
|
// Calculate all the intercepts for the newly added point and the newly calculated A
|
|
const B = createLabelledBinarySearchTree()
|
|
if (X.length() > 1) {
|
|
// There are at least two points in the X and Y arrays, so let's calculate the intercept
|
|
let i = 0
|
|
while (i < X.length() - 1) {
|
|
// Please note , as we need to recreate the B-tree for each newly added datapoint anyway, the label i isn't relevant
|
|
B.push(i, (Y.get(i) - (_A * X.get(i))))
|
|
i++
|
|
}
|
|
}
|
|
|
|
_B = B.median()
|
|
}
|
|
|
|
function slope () {
|
|
return _A
|
|
}
|
|
|
|
function intercept () {
|
|
return _B
|
|
}
|
|
|
|
function coefficientA () {
|
|
// For testing purposses only!
|
|
return _A
|
|
}
|
|
|
|
function coefficientB () {
|
|
// For testing purposses only!
|
|
return _B
|
|
}
|
|
|
|
function length () {
|
|
return X.length()
|
|
}
|
|
|
|
function goodnessOfFit () {
|
|
// This function returns the R^2 as a goodness of fit indicator
|
|
let i = 0
|
|
let ssr = 0
|
|
let sst = 0
|
|
if (X.length() >= 2) {
|
|
while (i < X.length() - 1) {
|
|
ssr += Math.pow((Y.get(i) - projectX(X.get(i))), 2)
|
|
sst += Math.pow((Y.get(i) - Y.average()), 2)
|
|
i++
|
|
}
|
|
if (sst !== 0) {
|
|
const _goodnessOfFit = 1 - (ssr / sst)
|
|
return _goodnessOfFit
|
|
} else {
|
|
return 0
|
|
}
|
|
} else {
|
|
return 0
|
|
}
|
|
}
|
|
|
|
function projectX (x) {
|
|
if (X.length() >= 2) {
|
|
return (_A * x) + _B
|
|
} else {
|
|
return 0
|
|
}
|
|
}
|
|
|
|
function projectY (y) {
|
|
if (X.length() >= 2 && _A !== 0) {
|
|
return ((y - _B) / _A)
|
|
} else {
|
|
return 0
|
|
}
|
|
}
|
|
|
|
function numberOfXValuesAbove (testedValue) {
|
|
return X.numberOfValuesAbove(testedValue)
|
|
}
|
|
|
|
function numberOfXValuesEqualOrBelow (testedValue) {
|
|
return X.numberOfValuesEqualOrBelow(testedValue)
|
|
}
|
|
|
|
function numberOfYValuesAbove (testedValue) {
|
|
return Y.numberOfValuesAbove(testedValue)
|
|
}
|
|
|
|
function numberOfYValuesEqualOrBelow (testedValue) {
|
|
return Y.numberOfValuesEqualOrBelow(testedValue)
|
|
}
|
|
|
|
function xAtSeriesBegin () {
|
|
return X.atSeriesBegin()
|
|
}
|
|
|
|
function xAtSeriesEnd () {
|
|
return X.atSeriesEnd()
|
|
}
|
|
|
|
function yAtSeriesBegin () {
|
|
return Y.atSeriesBegin()
|
|
}
|
|
|
|
function yAtSeriesEnd () {
|
|
return Y.atSeriesEnd()
|
|
}
|
|
|
|
function xSum () {
|
|
return X.sum()
|
|
}
|
|
|
|
function ySum () {
|
|
return Y.sum()
|
|
}
|
|
|
|
function xAverage () {
|
|
return X.average()
|
|
}
|
|
|
|
function yAverage () {
|
|
return Y.average()
|
|
}
|
|
|
|
function xSeries () {
|
|
return X.series()
|
|
}
|
|
|
|
function ySeries () {
|
|
return Y.series()
|
|
}
|
|
|
|
function calculateSlope (pointOne, pointTwo) {
|
|
if (pointOne !== pointTwo && X.get(pointOne) !== X.get(pointTwo)) {
|
|
return ((Y.get(pointTwo) - Y.get(pointOne)) / (X.get(pointTwo) - X.get(pointOne)))
|
|
} else {
|
|
log.error('TS Linear Regressor, Division by zero prevented!')
|
|
return 0
|
|
}
|
|
}
|
|
|
|
function reset () {
|
|
X.reset()
|
|
Y.reset()
|
|
A.reset()
|
|
_A = 0
|
|
_B = 0
|
|
}
|
|
|
|
return {
|
|
push,
|
|
slope,
|
|
intercept,
|
|
coefficientA,
|
|
coefficientB,
|
|
length,
|
|
goodnessOfFit,
|
|
projectX,
|
|
projectY,
|
|
numberOfXValuesAbove,
|
|
numberOfXValuesEqualOrBelow,
|
|
numberOfYValuesAbove,
|
|
numberOfYValuesEqualOrBelow,
|
|
xAtSeriesBegin,
|
|
xAtSeriesEnd,
|
|
yAtSeriesBegin,
|
|
yAtSeriesEnd,
|
|
xSum,
|
|
ySum,
|
|
xAverage,
|
|
yAverage,
|
|
xSeries,
|
|
ySeries,
|
|
reset
|
|
}
|
|
}
|
|
|
|
export { createTSLinearSeries }
|