KiBot/kibot/out_report.py

953 lines
41 KiB
Python

# -*- coding: utf-8 -*-
# Copyright (c) 2022-2023 Salvador E. Tropea
# Copyright (c) 2022-2023 Instituto Nacional de Tecnología Industrial
# License: GPL-3.0
# Project: KiBot (formerly KiPlot)
"""
Dependencies:
- name: Pandoc
role: Create PDF/ODF/DOCX files
url: https://pandoc.org/
url_down: https://github.com/jgm/pandoc/releases
debian: pandoc
arch: pandoc
extra_deb: ['texlive', 'texlive-latex-base', 'texlive-latex-recommended']
extra_arch: ['texlive-core']
comments: 'In CI/CD environments: the `kicad_auto_test` docker image contains it.'
"""
import os
import re
import pcbnew
from subprocess import check_output, STDOUT, CalledProcessError
from .gs import GS
from .misc import (UI_SMD, UI_VIRTUAL, MOD_THROUGH_HOLE, MOD_SMD, MOD_EXCLUDE_FROM_POS_FILES, FAILED_EXECUTE, W_WRONGEXT,
W_WRONGOAR, W_ECCLASST, VIATYPE_THROUGH, VIATYPE_BLIND_BURIED, VIATYPE_MICROVIA, W_BLINDVIAS, W_MICROVIAS)
from .registrable import RegOutput
from .out_base import BaseOptions
from .error import KiPlotConfigurationError
from .kiplot import config_output
from .dep_downloader import get_dep_data
from .macros import macros, document, output_class # noqa: F401
from . import log
from . import __version__
logger = log.get_logger()
INF = float('inf')
# This OAR is the minimum Eurocircuits does without extra charge
EC_SMALL_OAR = GS.from_mm(0.125)
# The minimum drill tool
EC_MIN_DRILL = GS.from_mm(0.1)
YES_NO = ['no', 'yes']
def do_round(v, dig):
v = round(v+1e-9, dig)
return v if dig else int(v)
def to_mm(iu, dig=2):
""" KiCad Internal Units to millimeters """
if hasattr(iu, 'x'):
return (do_round(GS.to_mm(iu.x), dig), do_round(GS.to_mm(iu.y), dig))
return do_round(GS.to_mm(iu), dig)
def to_mils(iu, dig=0):
""" KiCad Internal Units to mils (1/1000 inch) """
return do_round(GS.to_mils(iu), dig)
def to_inches(iu, dig=2):
""" KiCad Internal Units to inches """
return do_round(GS.to_mils(iu)/1000, dig)
def get_class_index(val, lst):
""" Used to search in an Eurocircuits class vector.
Returns the first match that is >= to val. """
val = to_mm(val, 3)
for c, v in enumerate(lst):
if val >= v:
return c
return c+1
def get_pattern_class(track, clearance, oar, case, target=None):
""" Returns the Eurocircuits Pattern class for a track width, clearance and OAR """
c1 = (0.25, 0.2, 0.175, 0.150, 0.125, 0.1, 0.09)
c2 = (0.2, 0.15, 0.15, 0.125, 0.125, 0.1, 0.1)
ct = get_class_index(track, c1)
cc = get_class_index(clearance, c1)
co = get_class_index(oar, c2)
cf = max(ct, max(cc, co))+3
if target is not None and cf > target:
if ct+3 > target:
logger.warning(W_ECCLASST+"Track too narrow {} mm, should be ≥ {} mm".format(to_mm(track), c1[target-3]))
if cc+3 > target:
logger.warning(W_ECCLASST+"Clearance too small {} mm, should be ≥ {} mm".
format(to_mm(clearance), c1[target-3]))
if co+3 > target:
logger.warning(W_ECCLASST+"OAR too small {} mm, should be ≥ {} mm".format(to_mm(oar), c2[target-3]))
logger.debug('Eurocircuits Pattern class for `{}` is {} because the clearance is {}, track is {} and OAR is {}'.
format(case, cf, to_mm(clearance), to_mm(track), to_mm(oar)))
return cf
def get_drill_class(drill, case, target=None):
""" Returns the Eurocircuits Drill class for a drill size.
This is the real (tool) size. """
c3 = (0.6, 0.45, 0.35, 0.25, 0.2)
cd = get_class_index(drill, c3)
res = chr(ord('A') + cd)
if target is not None and cd > target:
logger.warning(W_ECCLASST+"Drill too small {} mm, should be ≥ {} mm".format(to_mm(drill), c3[target]))
logger.debug('Eurocircuits Drill class for `{}` is {} because the drill is {}'.format(case, res, to_mm(drill)))
return res
def to_top_bottom(front, bottom):
""" Returns a text indicating if the feature is in top/bottom layers """
if front and bottom:
return "TOP / BOTTOM"
elif front:
return "TOP"
elif bottom:
return "BOTTOM"
return "NONE"
def to_smd_tht(smd, tht):
""" Returns a text indicating if the components are SMD/THT """
if smd and tht:
return "SMD + THT"
elif smd:
return "SMD"
elif tht:
return "THT"
return "NONE"
def to_top_bottom_color(front, bottom):
""" Returns a text indicating the top/bottom colors """
f = front.strip().lower()
b = bottom.strip().lower()
if f == b:
return front.capitalize()
return "Top: "+front.capitalize()+" / Bottom: "+bottom.capitalize()
def solve_edge_connector(val):
if val == 'no':
return ''
if val == 'bevelled':
return 'yes, bevelled'
return val
def get_pad_info(pad):
return ("Position {} on layer {}, size {} drill size {}".
format(to_mm(pad.GetPosition()), GS.board.GetLayerName(pad.GetLayer()),
to_mm(pad.GetSize(), 4), to_mm(pad.GetDrillSize(), 4)))
def adjust_drill(val, is_pth=True, pad=None):
""" Add drill_size_increment if this is a PTH hole and round it to global_extra_pth_drill """
if val == INF:
return val
step = GS.from_mm(GS.global_drill_size_increment)
if is_pth:
val += GS.from_mm(GS.global_extra_pth_drill)
res = int((val+step/2)/step)*step
# if pad:
# logger.error(f"{to_mm(val)} -> {to_mm(res)} {get_pad_info(pad)}")
# else:
# logger.error(f"{to_mm(val)} -> {to_mm(res)}")
return res
def list_nice(names):
if len(names) == 1:
return '`{}`'.format(names[0])
res = ''
for n in names[:-1]:
res += ', `{}`'.format(n)
res += ' and `{}`'.format(names[-1])
return res[2:]
class ReportOptions(BaseOptions):
def __init__(self):
with document:
self.output = GS.def_global_output
""" *Output file name (%i='report', %x='txt') """
self.template = 'full'
""" *Name for one of the internal templates (full, full_svg, simple) or a custom template file.
Environment variables and ~ are allowed.
Note: when converting to PDF PanDoc can fail on some Unicode values (use `simple_ASCII`) """
self.convert_from = 'markdown'
""" Original format for the report conversion. Current templates are `markdown`. See `do_convert` """
self.convert_to = 'pdf'
""" *Target format for the report conversion. See `do_convert` """
self.do_convert = False
""" *Run `Pandoc` to convert the report. Note that Pandoc must be installed.
The conversion is done assuming the report is in `convert_from` format.
The output file will be in `convert_to` format.
The available formats depends on the `Pandoc` installation """
self.converted_output = GS.def_global_output
""" Converted output file name (%i='report', %x=`convert_to`).
Note that the extension should match the `convert_to` value """
self.eurocircuits_class_target = '10F'
""" Which Eurocircuits class are we aiming at """
self.eurocircuits_reduce_holes = 0.45
""" When computing the Eurocircuits category: Final holes sizes smaller or equal to this given
diameter can be reduced to accommodate the correct annular ring values.
Use 0 to disable it """
super().__init__()
self._expand_id = 'report'
self._expand_ext = 'txt'
self._mm_digits = 2
self._mils_digits = 0
self._in_digits = 2
# Extra help for PanDoc
dep = get_dep_data('report', 'PanDoc')
deb_text = 'In Debian/Ubuntu environments: install '+list_nice([dep.deb_package]+dep.extra_deb)
self._help_do_convert += ".\n"+'\n'.join(dep.comments)+'\n'+deb_text
self._shown_defined = False
def config(self, parent):
super().config(parent)
self.to_ascii = False
if self.template.endswith('_ASCII'):
self.template = self.template[:-6]
self.to_ascii = True
if self.template.lower() in ('full', 'simple', 'full_svg'):
self.template = os.path.abspath(os.path.join(GS.get_resource_path('report_templates'),
'report_'+self.template.lower()+'.txt'))
if not os.path.isabs(self.template):
self.template = os.path.expandvars(os.path.expanduser(self.template))
if not os.path.isfile(self.template):
raise KiPlotConfigurationError("Missing report template: `{}`".format(self.template))
m = re.match(r'(\d+)([A-F])', self.eurocircuits_class_target)
if not m:
raise KiPlotConfigurationError("Malformed Eurocircuits class, must be a number and a letter (<=10F)")
self._ec_pat = int(m.group(1))
if self._ec_pat < 3 or self._ec_pat > 10:
raise KiPlotConfigurationError("Eurocircuits Pattern class out of range [3,10]")
self._ec_drl = ord(m.group(2))-ord('A')
def do_replacements(self, line, defined):
""" Replace `${VAR}` patterns """
for var in re.findall(r'\$\{([^\s\}]+)\}', line):
if var[0] == '_':
# Prevent access to internal data
continue
units = None
var_ori = var
m = re.match(r'^(%[^,]+),(.*)$', var)
pattern = None
if m:
pattern = m.group(1)
var = m.group(2)
if var.endswith('_mm'):
units = to_mm
digits = self._mm_digits
var = var[:-3]
elif var.endswith('_in'):
units = to_inches
digits = self._in_digits
var = var[:-3]
elif var.endswith('_mils'):
units = to_mils
digits = self._mils_digits
var = var[:-5]
if var in defined:
val = defined[var]
if val == INF:
val = 'N/A'
elif units is not None and isinstance(val, (int, float)):
val = units(val, digits)
if pattern is not None:
clear = False
if 's' in pattern:
val = str(val)
else:
try:
val = float(val)
except ValueError:
val = 0
clear = True
rep = pattern % val
if clear:
rep = ' '*len(rep)
else:
rep = str(val)
line = line.replace('${'+var_ori+'}', rep)
else:
logger.non_critical_error('Unable to expand `{}`'.format(var))
if not self._shown_defined:
self._shown_defined = True
logger.non_critical_error('Defined values: {}'.format([v for v in defined.keys() if v[0] != '_']))
return line
def context_defined_tracks(self, line):
""" Replace iterator for the `defined_tracks` context """
text = ''
for t in sorted(self._track_sizes):
if not t:
continue # KiCad 6
text += self.do_replacements(line, {'track': t})
return text
def context_used_tracks(self, line):
""" Replace iterator for the `used_tracks` context """
text = ''
for t in sorted(self._tracks_m.keys()):
text += self.do_replacements(line, {'track': t, 'count': self._tracks_m[t],
'defined': YES_NO[t in self._tracks_defined]})
return text
def context_defined_vias(self, line):
""" Replace iterator for the `defined_vias` context """
text = ''
for v in self._via_sizes_sorted:
text += self.do_replacements(line, {'pad': v[1], 'drill': v[0]})
return text
def context_used_vias(self, line):
""" Replace iterator for the `used_vias` context """
text = ''
if not self._vias_m:
return text
for v in self._vias_m:
d = v[1]
h = v[0]
aspect = round(self.thickness/d, 1)
# IPC-2222 Table 9.4
producibility_level = 'C'
if aspect < 9:
if aspect < 5:
producibility_level = 'A'
else:
producibility_level = 'B'
defined = {'pad': v[1], 'drill': v[0]}
defined['count'] = self._vias[v]
defined['aspect'] = aspect
defined['producibility_level'] = producibility_level
defined['defined'] = YES_NO[(h, d) in self._vias_defined]
text += self.do_replacements(line, defined)
return text
def context_hole_sizes_no_vias(self, line):
""" Replace iterator for the `hole_sizes_no_vias` context """
text = ''
for d in sorted(self._drills.keys()):
text += self.do_replacements(line, {'drill': d, 'count': self._drills[d]})
return text
def context_oval_hole_sizes(self, line):
""" Replace iterator for the `oval_hole_sizes` context """
text = ''
for d in sorted(self._drills_oval.keys()):
text += self.do_replacements(line, {'drill_1': d[0], 'drill_2': d[1], 'count': self._drills_oval[d]})
return text
def context_drill_tools(self, line):
""" Replace iterator for the `drill_tools` context """
text = ''
for d in sorted(self._drills_real.keys()):
text += self.do_replacements(line, {'drill': d, 'count': self._drills_real[d]})
return text
def context_stackup(self, line):
""" Replace iterator for the `stackup` context """
text = ''
for s in self._stackup:
context = {}
for k in dir(s):
val = getattr(s, k)
if k[0] != '_' and not callable(val):
context[k] = val if val is not None else ''
text += self.do_replacements(line, context)
return text
def _context_images(self, line, images):
""" Replace iterator for the various contexts that expands images """
text = ''
for s in images:
context = {'path': s[0], 'comment': s[1], 'new_line': '\n'}
text += self.do_replacements(line, context)
return text
def context_layer_pdfs(self, line):
""" Replace iterator for the `layer_pdfs` context """
return self._context_images(line, self._layer_pdfs)
def context_layer_svgs(self, line):
""" Replace iterator for the `layer_svgs` context """
return self._context_images(line, self._layer_svgs)
def context_schematic_pdfs(self, line):
""" Replace iterator for the `schematic_pdfs` context """
return self._context_images(line, self._schematic_pdfs)
def context_schematic_svgs(self, line):
""" Replace iterator for the `schematic_svgs` context """
return self._context_images(line, self._schematic_svgs)
def _context_individual_images(self, line, images):
""" Replace iterator for the various contexts that expands one image """
text = ''
context = {'new_line': '\n'}
for s in images:
context['path_'+s[2]] = s[0]
context['comment_'+s[2]] = s[1]
text += self.do_replacements(line, context)
return text
def context_layer_pdf(self, line):
""" Replace iterator for the `layer_pdf` context """
return self._context_individual_images(line, self._layer_pdfs)
def context_layer_svg(self, line):
""" Replace iterator for the `layer_svg` context """
return self._context_individual_images(line, self._layer_svgs)
def context_schematic_pdf(self, line):
""" Replace iterator for the `schematic_pdf` context """
return self._context_individual_images(line, self._schematic_pdfs)
def context_schematic_svg(self, line):
""" Replace iterator for the `schematic_svg` context """
return self._context_individual_images(line, self._schematic_svgs)
@staticmethod
def is_pure_smd_5(m):
return m.GetAttributes() == UI_SMD
@staticmethod
def is_pure_smd_6(m):
return m.GetAttributes() & (MOD_THROUGH_HOLE | MOD_SMD) == MOD_SMD
@staticmethod
def is_not_virtual_5(m):
return m.GetAttributes() != UI_VIRTUAL
@staticmethod
def is_not_virtual_6(m):
return not (m.GetAttributes() & MOD_EXCLUDE_FROM_POS_FILES)
def get_attr_tests(self):
if GS.ki5:
return self.is_pure_smd_5, self.is_not_virtual_5
return self.is_pure_smd_6, self.is_not_virtual_6
def measure_pcb(self, board):
edge_layer = board.GetLayerID('Edge.Cuts')
x1 = y1 = x2 = y2 = None
for d in board.GetDrawings():
if d.GetClass() == GS.board_gr_type and d.GetLayer() == edge_layer:
bb = GS.get_shape_bbox(d)
start = bb.GetOrigin()
end = bb.GetEnd()
if x1 is None:
x1 = x2 = start.x
y1 = y2 = start.y
for p in [start, end]:
x2 = max(x2, p.x)
y2 = max(y2, p.y)
x1 = min(x1, p.x)
y1 = min(y1, p.y)
# This is a special case: the PCB edges are in a footprint
for m in GS.get_modules():
for gi in m.GraphicalItems():
if gi.GetClass() == GS.footprint_gr_type and gi.GetLayer() == edge_layer:
bb = GS.get_shape_bbox(gi)
start = bb.GetOrigin()
end = bb.GetEnd()
if x1 is None:
x1 = x2 = start.x
y1 = y2 = start.y
for p in [start, end]:
x2 = max(x2, p.x)
y2 = max(y2, p.y)
x1 = min(x1, p.x)
y1 = min(y1, p.y)
if x1 is None:
self.bb_w = self.bb_h = INF
else:
self.bb_w = x2-x1
self.bb_h = y2-y1
def compute_oar(self, pad, hole):
""" Compute the OAR and the corrected OAR for Eurocircuits """
oar_ec = oar = (pad-hole)/2
if oar < EC_SMALL_OAR and oar > 0 and hole < GS.from_mm(self.eurocircuits_reduce_holes):
# This hole is classified as "via hole" and has a problematic OAR
hole_ec = max(adjust_drill(pad-2*EC_SMALL_OAR, is_pth=False), EC_MIN_DRILL)
oar_ec = (pad-hole_ec)/2
if GS.debug_level > 2:
logger.debug('Adjusting drill from {} to {} to get an OAR of {}'.
format(to_mm(hole), to_mm(hole_ec), to_mm(oar_ec)))
else:
hole_ec = hole
return oar, oar_ec, hole_ec
def analyze_oar(self, oar_t, oar_ec_t, is_pth, min_oar, pad, dr_x_real, dr_y_real, pad_sz, dr):
""" Check the computed OAR and choose if we use it or not.
Inform anomalies to the user. """
if oar_t > 0:
if is_pth:
# For plated holes we always use it and report anomalies
self.oar_pads = min(self.oar_pads, oar_t)
self.oar_pads_ec = min(self.oar_pads_ec, oar_ec_t)
if oar_t < min_oar:
logger.warning(W_WRONGOAR+"Really small OAR detected ({} mm) for pad {} using drill tool ({}, {})".
format(to_mm(oar_t, 4), get_pad_info(pad), to_mm(dr_x_real), to_mm(dr_y_real)))
if pad_sz == dr:
logger.warning(W_WRONGOAR+"Try adjusting the drill size to an available drill tool")
else:
# For non plated holes KiCad doesn't even create a pad if pad_sz == dr
if pad_sz != dr:
self.oar_pads = min(self.oar_pads, oar_t)
self.oar_pads_ec = min(self.oar_pads_ec, oar_ec_t)
elif oar_t < 0:
# The negative value can be a result of converting the drill size to a real drill size
# So we inform it only if the pad and drill are different
if pad_sz != dr and is_pth:
logger.warning(W_WRONGOAR+"Negative OAR detected for pad "+get_pad_info(pad))
elif oar_t == 0 and is_pth:
logger.warning(W_WRONGOAR+"Plated pad without copper "+get_pad_info(pad))
def collect_data(self, board):
ds = board.GetDesignSettings()
self.extra_pth_drill = GS.from_mm(GS.global_extra_pth_drill)
###########################################################
# Board size
###########################################################
# The value returned by ComputeBoundingBox(True) adds the drawing width!
bb = board.ComputeBoundingBox(True)
self.bb_w_d = bb.GetWidth()
self.bb_h_d = bb.GetHeight()
self.measure_pcb(board)
###########################################################
# Board thickness
###########################################################
self.thickness = ds.GetBoardThickness()
###########################################################
# Number of layers
###########################################################
self.layers = ds.GetCopperLayerCount()
###########################################################
# Solder mask layers
###########################################################
fmask = board.IsLayerEnabled(board.GetLayerID('F.Mask'))
bmask = board.IsLayerEnabled(board.GetLayerID('B.Mask'))
self.solder_mask = to_top_bottom(fmask, bmask)
###########################################################
# Silk screen
###########################################################
fsilk = board.IsLayerEnabled(board.GetLayerID('F.SilkS'))
bsilk = board.IsLayerEnabled(board.GetLayerID('B.SilkS'))
self.silk_screen = to_top_bottom(fsilk, bsilk)
###########################################################
# Clearance
###########################################################
self.clearance = ds.GetSmallestClearanceValue()
# This seems to be bogus:
# h2h = ds.m_HoleToHoleMin
###########################################################
# Track width (min)
###########################################################
self.track_d = ds.m_TrackMinWidth
tracks = board.GetTracks()
self.oar_vias = self.oar_vias_ec = self.track = INF
self._vias = {}
self._vias_ec = {}
self._tracks_m = {}
self._drills_real = {}
self._drills_ec = {}
track_type = 'TRACK' if GS.ki5 else 'PCB_TRACK'
via_type = 'VIA' if GS.ki5 else 'PCB_VIA'
self.thru_vias_count = self.blind_vias_count = self.micro_vias_count = self.vias_count = 0
for t in tracks:
tclass = t.GetClass()
if tclass == track_type:
w = t.GetWidth()
self.track = min(w, self.track)
self._tracks_m[w] = self._tracks_m.get(w, 0) + 1
elif tclass == via_type:
via = t.Cast()
via_id = (via.GetDrill(), via.GetWidth())
self._vias[via_id] = self._vias.get(via_id, 0) + 1
d = adjust_drill(via_id[0])
oar, oar_ec, d_ec = self.compute_oar(via_id[1], d)
via_id_ec = (d_ec, via_id[1])
self._vias_ec[via_id_ec] = self._vias.get(via_id_ec, 0) + 1
self.oar_vias = min(self.oar_vias, oar)
self.oar_vias_ec = min(self.oar_vias_ec, oar_ec)
self._drills_real[d] = self._drills_real.get(d, 0) + 1
self._drills_ec[d_ec] = self._drills_ec.get(d_ec, 0) + 1
self.vias_count += 1
via_t = via.GetViaType()
if via_t == VIATYPE_THROUGH:
self.thru_vias_count += 1
elif via_t == VIATYPE_BLIND_BURIED:
self.blind_vias_count += 1
elif via_t == VIATYPE_MICROVIA:
self.micro_vias_count += 1
self.track_min = min(self.track_d, self.track)
###########################################################
# Drill (min)
###########################################################
modules = board.GetModules() if GS.ki5 else board.GetFootprints()
self._drills = {}
self._drills_oval = {}
self.oar_pads = self.oar_pads_ec = self.pad_drill = self.pad_drill_real = self.pad_drill_real_ec = INF
self.slot = INF
self.top_smd = self.top_tht = self.bot_smd = self.bot_tht = 0
top_layer = board.GetLayerID('F.Cu')
bottom_layer = board.GetLayerID('B.Cu')
is_pure_smd, is_not_virtual = self.get_attr_tests()
npth_attrib = 3 if GS.ki5 else pcbnew.PAD_ATTRIB_NPTH
min_oar = GS.from_mm(0.1)
for m in modules:
layer = m.GetLayer()
if layer == top_layer:
if is_pure_smd(m):
self.top_smd += 1
elif is_not_virtual(m):
self.top_tht += 1
elif layer == bottom_layer:
if is_pure_smd(m):
self.bot_smd += 1
elif is_not_virtual(m):
self.bot_tht += 1
pads = m.Pads()
for pad in pads:
dr = pad.GetDrillSize()
if not dr.x:
continue
self.pad_drill = min(dr.x, self.pad_drill)
self.pad_drill = min(dr.y, self.pad_drill)
# Compute the drill size to get it after plating
is_pth = pad.GetAttribute() != npth_attrib
dr_x_real = adjust_drill(dr.x, is_pth, pad)
dr_y_real = adjust_drill(dr.y, is_pth, pad)
self.pad_drill_real = min(dr_x_real, self.pad_drill_real)
self.pad_drill_real = min(dr_y_real, self.pad_drill_real)
if dr.x == dr.y:
self._drills[dr.x] = self._drills.get(dr.x, 0) + 1
self._drills_real[dr_x_real] = self._drills_real.get(dr_x_real, 0) + 1
else:
if dr.x < dr.y:
m = (dr.x, dr.y)
d = dr.x
d_r = dr_x_real
else:
m = (dr.y, dr.x)
d = dr.y
d_r = dr_y_real
self._drills_oval[m] = self._drills_oval.get(m, 0) + 1
self.slot = min(self.slot, m[0])
# print('{} @ {}'.format(dr, pad.GetPosition()))
self._drills_real[d_r] = self._drills_real.get(d_r, 0) + 1
pad_sz = pad.GetSize()
oar_x, oar_ec_x, dr_x_ec = self.compute_oar(pad_sz.x, dr_x_real)
oar_y, oar_ec_y, dr_y_ec = self.compute_oar(pad_sz.y, dr_y_real)
dr_ec = min(dr_x_ec, dr_y_ec)
self._drills_ec[dr_ec] = self._drills_ec.get(dr_ec, 0) + 1
self.pad_drill_real_ec = min(dr_ec, self.pad_drill_real_ec)
oar_t = min(oar_x, oar_y)
oar_ec_t = min(oar_ec_x, oar_ec_y)
self.analyze_oar(oar_t, oar_ec_t, is_pth, min_oar, pad, dr_x_real, dr_y_real, pad_sz, dr)
self._vias_m = sorted(self._vias.keys())
self._vias_ec_m = sorted(self._vias_ec.keys())
# Via Pad size
self.via_pad_d = ds.m_ViasMinSize
self.via_pad = self._vias_m[0][1] if self._vias_m else INF
self.via_pad_min = min(self.via_pad_d, self.via_pad)
# Via Drill size
self._vias_m = sorted(self._vias.keys())
self.via_drill_d = ds.m_ViasMinDrill if GS.ki5 else ds.m_MinThroughDrill
self.via_drill = self._vias_m[0][0] if self._vias_m else INF
self.via_drill_min = min(self.via_drill_d, self.via_drill)
self.via_drill_real_ec = self.via_drill_ec = self._vias_ec_m[0][0] if self._vias_ec_m else INF
self.via_drill_ec_min = min(self.via_drill_d, self.via_drill_ec)
# Via Drill size before platting
self.via_drill_real_d = adjust_drill(self.via_drill_d)
self.via_drill_real = adjust_drill(self.via_drill)
self.via_drill_real_min = adjust_drill(self.via_drill_min)
self.via_drill_real_ec_min = adjust_drill(self.via_drill_ec_min)
# Pad Drill
# No minimum defined (so no _d)
self.pad_drill_min = self.pad_drill if GS.ki5 else ds.m_MinThroughDrill
self.pad_drill_real_min = self.pad_drill_real if GS.ki5 else adjust_drill(ds.m_MinThroughDrill, False)
self.pad_drill_real_ec_min = self.pad_drill_real_ec if GS.ki5 else adjust_drill(ds.m_MinThroughDrill, False)
# Drill overall
self.drill_d = min(self.via_drill_d, self.pad_drill)
self.drill = min(self.via_drill, self.pad_drill)
self.drill_min = min(self.via_drill_min, self.pad_drill_min)
# Drill overall size minus 0.1 mm
self.drill_real_d = min(self.via_drill_real_d, self.pad_drill_real)
self.drill_real = min(self.via_drill_real, self.pad_drill_real)
self.drill_real_min = min(self.via_drill_real_min, self.pad_drill_real_min)
self.drill_real_ec_d = min(self.via_drill_real_d, self.pad_drill_real_ec)
self.drill_real_ec = min(self.via_drill_real_ec, self.pad_drill_real_ec)
self.drill_real_ec_min = min(self.via_drill_real_ec_min, self.pad_drill_real_ec_min)
self.top_comp_type = to_smd_tht(self.top_smd, self.top_tht)
self.bot_comp_type = to_smd_tht(self.bot_smd, self.bot_tht)
###########################################################
# Vias
###########################################################
if GS.ki7:
self.micro_vias = YES_NO[GS.global_allow_microvias]
self.blind_vias = YES_NO[GS.global_allow_blind_buried_vias]
else:
self.micro_vias = YES_NO[ds.m_MicroViasAllowed]
self.blind_vias = YES_NO[ds.m_BlindBuriedViaAllowed]
if self.blind_vias == 'no' and self.blind_vias_count:
logger.warning(W_BLINDVIAS+"Buried/blind vias not allowed, but found {}".format(self.blind_vias_count))
if self.micro_vias == 'no' and self.micro_vias_count:
logger.warning(W_MICROVIAS+"Micro vias not allowed, but found {}".format(self.micro_vias_count))
self.uvia_pad = ds.m_MicroViasMinSize
self.uvia_drill = ds.m_MicroViasMinDrill
via_sizes = board.GetViasDimensionsList()
self._vias_defined = set()
self._via_sizes_sorted = []
self.oar_vias_d = self.oar_vias_ec_d = INF
for v in sorted(via_sizes, key=lambda x: (x.m_Diameter, x.m_Drill)):
d = v.m_Diameter
h = v.m_Drill
if not d and not h:
continue # KiCad 6
oar, oar_ec, _ = self.compute_oar(d, adjust_drill(h))
self.oar_vias_d = min(self.oar_vias_d, oar)
self.oar_vias_ec_d = min(self.oar_vias_ec_d, oar_ec)
self._vias_defined.add((h, d))
self._via_sizes_sorted.append((h, d))
###########################################################
# Outer Annular Ring
###########################################################
self.oar_pads_min = self.oar_pads
self.oar_d = min(self.oar_vias_d, self.oar_pads)
self.oar = min(self.oar_vias, self.oar_pads)
self.oar_min = min(self.oar_d, self.oar)
self.oar_vias_min = min(self.oar_vias_d, self.oar_vias)
# Eurocircuits OAR
self.oar_pads_ec_min = self.oar_pads_ec
self.oar_ec_d = min(self.oar_vias_ec_d, self.oar_pads_ec)
self.oar_ec = min(self.oar_vias_ec, self.oar_pads_ec)
self.oar_ec_min = min(self.oar_ec_d, self.oar_ec)
self.oar_vias_ec_min = min(self.oar_vias_ec_d, self.oar_vias_ec)
###########################################################
# Eurocircuits class
# https://www.eurocircuits.com/pcb-design-guidelines-classification/
###########################################################
# Pattern class
self.pattern_class_min = get_pattern_class(self.track_min, self.clearance, self.oar_ec_min, 'minimum')
self.pattern_class = get_pattern_class(self.track, self.clearance, self.oar_ec, 'measured', self._ec_pat)
self.pattern_class_d = get_pattern_class(self.track_d, self.clearance, self.oar_ec_d, 'defined')
# Drill class
self.drill_class_min = get_drill_class(self.drill_real_ec_min, 'minimum')
self.drill_class = get_drill_class(self.drill_real_ec, 'measured', self._ec_drl)
self.drill_class_d = get_drill_class(self.drill_real_ec_d, 'defined')
###########################################################
# General stats
###########################################################
self._track_sizes = board.GetTrackWidthList()
self._tracks_defined = set(self._track_sizes)
def eval_conditional(self, line):
context = {k: getattr(self, k) for k in dir(self) if k[0] != '_' and not callable(getattr(self, k))}
res = None
text = line[2:].strip()
logger.debug('- Evaluating `{}`'.format(text))
try:
res = eval(text, {}, context)
except Exception as e:
raise KiPlotConfigurationError('wrong conditional: `{}`\nPython says: `{}`'.format(text, str(e)))
logger.debug('- Result `{}`'.format(res))
return res
def get_kicad_vars(self):
vars = {}
vars['KICAD_VERSION'] = 'KiCad E.D.A. '+GS.kicad_version+' + KiBot v'+__version__
GS.load_pcb_title_block()
for num in range(9):
vars['COMMENT'+str(num+1)] = GS.pcb_com[num]
vars['COMPANY'] = GS.pcb_comp
vars['ISSUE_DATE'] = GS.pcb_date
vars['REVISION'] = GS.pcb_rev
vars['TITLE'] = GS.pcb_title
vars['FILENAME'] = GS.pcb_basename+'.kicad_pcb'
return vars
def do_template(self, template_file, output_file):
text = ''
logger.debug("Report template: `{}`".format(template_file))
# Collect the thing we could expand
defined = {}
defined.update(os.environ)
defined.update(self.get_kicad_vars())
defined.update(GS.load_pro_variables())
defined.update(self.__dict__)
with open(template_file, "rt") as f:
skip_next = False
for line in f:
if skip_next:
skip_next = False
continue
done = False
if line[0] == '#':
if line.startswith('#?'):
skip_next = not self.eval_conditional(line)
done = True
line = ''
elif ':' in line:
context = line[1:].split(':')[0]
logger.debug("- Report context: `{}`".format(context))
name = 'context_'+context
if hasattr(self, name):
# Contexts are members called context_*
line = getattr(self, name)(line[len(context)+2:])
done = True
else:
raise KiPlotConfigurationError("Unknown context: `{}`".format(context))
if not done:
# Just replace using any data member (_* excluded)
line = self.do_replacements(line, defined)
text += line
logger.debug("Report output: `{}`".format(output_file))
if self.to_ascii:
# PanDoc has problems with this Unicode
text = text.replace('', '>=')
with open(output_file, "wt") as f:
f.write(text)
def expand_converted_output(self, out_dir):
aux = self._expand_ext
self._expand_ext = str(self.convert_to)
res = self._parent.expand_filename(out_dir, self.converted_output)
self._expand_ext = aux
return res
def get_targets(self, out_dir):
files = [self._parent.expand_filename(out_dir, self.output)]
if self.do_convert:
files.append(self.expand_converted_output(out_dir))
return files
def convert(self, fname):
if not self.do_convert:
return
command = self.ensure_tool('PanDoc')
dir_out = os.path.dirname(os.path.abspath(fname))
out = self.expand_converted_output(dir_out)
logger.debug('Converting the report to: {}'.format(out))
resources = '--resource-path='+dir_out
# Pandoc 2.2.1 doesn't support "--to pdf"
if not out.endswith('.'+self.convert_to):
logger.warning(W_WRONGEXT+'The conversion tool detects the output format using the extension')
cmd = [command, '--from', self.convert_from, resources, fname, '-o', out]
logger.debug('Executing: '+GS.pasteable_cmd(cmd))
try:
check_output(cmd, stderr=STDOUT)
except CalledProcessError as e:
GS.exit_with_error(None, FAILED_EXECUTE, e)
def run(self, fname):
self.pcb_material = GS.global_pcb_material
self.solder_mask_color = GS.global_solder_mask_color
self.solder_mask_color_top = GS.global_solder_mask_color_top
self.solder_mask_color_bottom = GS.global_solder_mask_color_bottom
self.solder_mask_color_text = to_top_bottom_color(GS.global_solder_mask_color_top, GS.global_solder_mask_color_bottom)
self.silk_screen_color = GS.global_silk_screen_color
self.silk_screen_color_top = GS.global_silk_screen_color_top
self.silk_screen_color_bottom = GS.global_silk_screen_color_bottom
self.silk_screen_color_text = to_top_bottom_color(GS.global_silk_screen_color_top, GS.global_silk_screen_color_bottom)
self.pcb_finish = GS.global_pcb_finish
self.edge_connector = solve_edge_connector(GS.global_edge_connector)
self.castellated_pads = GS.global_castellated_pads
self.edge_plating = GS.global_edge_plating
self.copper_thickness = GS.global_copper_thickness
self.impedance_controlled = GS.global_impedance_controlled
self.stackup = 'yes' if GS.stackup else ''
self._stackup = GS.stackup if GS.stackup else []
self.collect_data(GS.board)
base_dir = os.path.dirname(fname)
# Collect the PCB layers and schematic prints
self._layer_pdfs = []
self._layer_svgs = []
self._schematic_pdfs = []
self._schematic_svgs = []
for o in RegOutput.get_outputs():
dest = None
if o.type == 'pdf_pcb_print' or o.type == 'pcb_print':
dest = self._layer_pdfs
elif o.type == 'svg_pcb_print':
dest = self._layer_svgs
elif o.type == 'pdf_sch_print':
dest = self._schematic_pdfs
elif o.type == 'svg_sch_print':
dest = self._schematic_svgs
if dest is not None:
if not o._configured:
config_output(o)
if o.type == 'pcb_print' and o.options.format != 'PDF':
if o.options.format == 'SVG':
dest = self._layer_svgs
else:
continue
out_files = o.get_targets(o.expand_dirname(os.path.join(GS.out_dir, o.dir)))
is_pcb_print_svg = o.type == 'pcb_print' and o.options.format == 'SVG'
for n, of in enumerate(out_files):
rel_path = os.path.relpath(of, base_dir)
comment = o.comment
if is_pcb_print_svg and o.options.pages[n].sheet:
comment += ' '+o.options.pages[n].sheet
dest.append((rel_path, comment, o.name))
self.layer_pdfs = len(self._layer_pdfs) > 0
self.layer_svgs = len(self._layer_svgs) > 0
self.schematic_pdfs = len(self._schematic_pdfs) > 0
self.schematic_svgs = len(self._schematic_svgs) > 0
self.do_template(self.template, fname)
self.convert(fname)
@output_class
class Report(BaseOutput): # noqa: F821
""" Design report
Generates a report about the design.
Mainly oriented to be sent to the manufacturer or check PCB details.
You can expand internal values, KiCad text variables and environment
variables using `${VARIABLE}` """
def __init__(self):
super().__init__()
with document:
self.options = ReportOptions
""" *[dict] Options for the `report` output """
self._category = 'PCB/docs'
@staticmethod
def get_conf_examples(name, layers):
pandoc = GS.check_tool(name, 'PanDoc')
gb = {}
outs = [gb]
gb['name'] = 'report_simple'
gb['comment'] = 'Simple design report'
gb['type'] = name
gb['output_id'] = '_simple'
gb['options'] = {'template': 'simple_ASCII'}
if pandoc:
gb['options']['do_convert'] = True
gb = {}
gb['name'] = 'report_full'
gb['comment'] = 'Full design report'
gb['type'] = name
gb['options'] = {'template': 'full_SVG'}
if pandoc:
gb['options']['do_convert'] = True
outs.append(gb)
return outs