zmk/app/src/split/bluetooth/central.c

1315 lines
47 KiB
C

/*
* Copyright (c) 2020 The ZMK Contributors
*
* SPDX-License-Identifier: MIT
*/
#include <zephyr/types.h>
#include <zephyr/init.h>
#include <zephyr/bluetooth/bluetooth.h>
#include <zephyr/bluetooth/conn.h>
#include <zephyr/bluetooth/uuid.h>
#include <zephyr/bluetooth/gatt.h>
#include <zephyr/bluetooth/hci.h>
#include <zephyr/settings/settings.h>
#include <zephyr/sys/byteorder.h>
#include <zephyr/logging/log.h>
LOG_MODULE_DECLARE(zmk, CONFIG_ZMK_LOG_LEVEL);
#include <zmk/stdlib.h>
#include <zmk/ble.h>
#include <zmk/behavior.h>
#include <zmk/sensors.h>
#include <zmk/split/transport/central.h>
#include <zmk/split/bluetooth/uuid.h>
#include <zmk/split/bluetooth/service.h>
#include <zmk/event_manager.h>
#include <zmk/events/position_state_changed.h>
#include <zmk/events/sensor_event.h>
#include <zmk/events/battery_state_changed.h>
#include <zmk/pointing/input_split.h>
#include <zmk/hid_indicators_types.h>
#include <zmk/physical_layouts.h>
#include <zmk/events/split_peripheral_layer_changed.h>
static int start_scanning(void);
#define POSITION_STATE_DATA_LEN 16
enum peripheral_slot_state {
PERIPHERAL_SLOT_STATE_OPEN,
PERIPHERAL_SLOT_STATE_CONNECTING,
PERIPHERAL_SLOT_STATE_CONNECTED,
};
struct peripheral_slot {
enum peripheral_slot_state state;
struct bt_conn *conn;
struct bt_gatt_discover_params discover_params;
struct bt_gatt_subscribe_params subscribe_params;
struct bt_gatt_subscribe_params sensor_subscribe_params;
struct bt_gatt_discover_params sub_discover_params;
uint16_t run_behavior_handle;
#if IS_ENABLED(CONFIG_ZMK_SPLIT_BLE_CENTRAL_BATTERY_LEVEL_FETCHING)
struct bt_gatt_subscribe_params batt_lvl_subscribe_params;
struct bt_gatt_read_params batt_lvl_read_params;
#endif /* IS_ENABLED(CONFIG_ZMK_SPLIT_BLE_CENTRAL_BATTERY_LEVEL_FETCHING) */
#if IS_ENABLED(CONFIG_ZMK_SPLIT_PERIPHERAL_HID_INDICATORS)
uint16_t update_hid_indicators;
#endif // IS_ENABLED(CONFIG_ZMK_SPLIT_PERIPHERAL_HID_INDICATORS)
uint16_t selected_physical_layout_handle;
uint16_t update_layers_handle;
uint8_t position_state[POSITION_STATE_DATA_LEN];
uint8_t changed_positions[POSITION_STATE_DATA_LEN];
};
#if IS_ENABLED(CONFIG_ZMK_INPUT_SPLIT)
static const struct bt_uuid *gatt_ccc_uuid = BT_UUID_GATT_CCC;
static const struct bt_uuid *gatt_cpf_uuid = BT_UUID_GATT_CPF;
struct peripheral_input_slot {
struct bt_conn *conn;
struct bt_gatt_subscribe_params sub;
uint8_t reg;
};
#define COUNT_INPUT_SPLIT(n) +1
static struct peripheral_input_slot
peripheral_input_slots[(0 DT_FOREACH_STATUS_OKAY(zmk_input_split, COUNT_INPUT_SPLIT))];
static bool input_slot_is_open(size_t i) {
return i < ARRAY_SIZE(peripheral_input_slots) && peripheral_input_slots[i].conn == NULL;
}
static bool input_slot_is_pending(size_t i) {
return i < ARRAY_SIZE(peripheral_input_slots) && peripheral_input_slots[i].conn != NULL &&
(!peripheral_input_slots[i].sub.value_handle ||
!peripheral_input_slots[i].sub.ccc_handle || !peripheral_input_slots[i].reg);
}
static int reserve_next_open_input_slot(struct peripheral_input_slot **slot, struct bt_conn *conn) {
for (size_t i = 0; i < ARRAY_SIZE(peripheral_input_slots); i++) {
if (input_slot_is_open(i)) {
peripheral_input_slots[i].conn = conn;
// Clear out any previously set values
peripheral_input_slots[i].sub.value_handle = 0;
peripheral_input_slots[i].sub.ccc_handle = 0;
peripheral_input_slots[i].reg = 0;
*slot = &peripheral_input_slots[i];
return i;
}
}
return -ENOMEM;
}
static int find_pending_input_slot(struct peripheral_input_slot **slot, struct bt_conn *conn) {
for (size_t i = 0; i < ARRAY_SIZE(peripheral_input_slots); i++) {
if (peripheral_input_slots[i].conn == conn && input_slot_is_pending(i)) {
*slot = &peripheral_input_slots[i];
return i;
}
}
return -ENODEV;
}
void release_peripheral_input_subs(struct bt_conn *conn) {
for (size_t i = 0; i < ARRAY_SIZE(peripheral_input_slots); i++) {
if (peripheral_input_slots[i].conn == conn) {
peripheral_input_slots[i].conn = NULL;
zmk_input_split_peripheral_disconnected(peripheral_input_slots[i].reg);
}
}
}
#endif // IS_ENABLED(CONFIG_ZMK_INPUT_SPLIT)
static zmk_split_transport_central_status_changed_cb_t transport_status_cb;
static bool is_enabled;
static struct peripheral_slot peripherals[ZMK_SPLIT_BLE_PERIPHERAL_COUNT];
static bool is_scanning = false;
static const struct bt_uuid_128 split_service_uuid = BT_UUID_INIT_128(ZMK_SPLIT_BT_SERVICE_UUID);
struct peripheral_event_wrapper {
uint8_t source;
struct zmk_split_transport_peripheral_event event;
};
K_MSGQ_DEFINE(peripheral_event_msgq, sizeof(struct peripheral_event_wrapper),
CONFIG_ZMK_SPLIT_BLE_CENTRAL_POSITION_QUEUE_SIZE, 4);
void peripheral_event_work_callback(struct k_work *work);
K_WORK_DEFINE(peripheral_event_work, peripheral_event_work_callback);
int peripheral_slot_index_for_conn(struct bt_conn *conn) {
for (int i = 0; i < ZMK_SPLIT_BLE_PERIPHERAL_COUNT; i++) {
if (peripherals[i].conn == conn) {
return i;
}
}
return -EINVAL;
}
struct peripheral_slot *peripheral_slot_for_conn(struct bt_conn *conn) {
int idx = peripheral_slot_index_for_conn(conn);
if (idx < 0) {
return NULL;
}
return &peripherals[idx];
}
int release_peripheral_slot(int index) {
if (index < 0 || index >= ZMK_SPLIT_BLE_PERIPHERAL_COUNT) {
return -EINVAL;
}
struct peripheral_slot *slot = &peripherals[index];
if (slot->state == PERIPHERAL_SLOT_STATE_OPEN) {
return -EINVAL;
}
LOG_DBG("Releasing peripheral slot at %d", index);
if (slot->conn != NULL) {
bt_conn_unref(slot->conn);
slot->conn = NULL;
}
slot->state = PERIPHERAL_SLOT_STATE_OPEN;
// Raise events releasing any active positions from this peripheral
for (int i = 0; i < POSITION_STATE_DATA_LEN; i++) {
for (int j = 0; j < 8; j++) {
if (slot->position_state[i] & BIT(j)) {
uint32_t position = (i * 8) + j;
struct peripheral_event_wrapper ev = {
.source = index,
.event = {.type = ZMK_SPLIT_TRANSPORT_PERIPHERAL_EVENT_TYPE_KEY_POSITION_EVENT,
.data = {.key_position_event = {
.position = position,
.pressed = false,
}}}};
k_msgq_put(&peripheral_event_msgq, &ev, K_NO_WAIT);
k_work_submit(&peripheral_event_work);
}
}
}
for (int i = 0; i < POSITION_STATE_DATA_LEN; i++) {
slot->position_state[i] = 0U;
slot->changed_positions[i] = 0U;
}
// Clean up previously discovered handles;
slot->subscribe_params.value_handle = 0;
slot->run_behavior_handle = 0;
slot->selected_physical_layout_handle = 0;
#if IS_ENABLED(CONFIG_ZMK_SPLIT_PERIPHERAL_HID_INDICATORS)
slot->update_hid_indicators = 0;
#endif // IS_ENABLED(CONFIG_ZMK_SPLIT_PERIPHERAL_HID_INDICATORS)
slot->update_layers_handle = 0;
return 0;
}
int reserve_peripheral_slot(const bt_addr_le_t *addr) {
int i = zmk_ble_put_peripheral_addr(addr);
if (i >= 0) {
if (peripherals[i].state == PERIPHERAL_SLOT_STATE_OPEN) {
// Be sure the slot is fully reinitialized.
release_peripheral_slot(i);
peripherals[i].state = PERIPHERAL_SLOT_STATE_CONNECTING;
return i;
}
}
return -ENOMEM;
}
int release_peripheral_slot_for_conn(struct bt_conn *conn) {
int idx = peripheral_slot_index_for_conn(conn);
if (idx < 0) {
return idx;
}
return release_peripheral_slot(idx);
}
int confirm_peripheral_slot_conn(struct bt_conn *conn) {
int idx = peripheral_slot_index_for_conn(conn);
if (idx < 0) {
return idx;
}
peripherals[idx].state = PERIPHERAL_SLOT_STATE_CONNECTED;
return 0;
}
static void notify_transport_status(void);
static void notify_status_work_cb(struct k_work *_work) { notify_transport_status(); }
static K_WORK_DEFINE(notify_status_work, notify_status_work_cb);
#if ZMK_KEYMAP_HAS_SENSORS
static uint8_t split_central_sensor_notify_func(struct bt_conn *conn,
struct bt_gatt_subscribe_params *params,
const void *data, uint16_t length) {
if (!data) {
LOG_DBG("[UNSUBSCRIBED]");
params->value_handle = 0U;
return BT_GATT_ITER_STOP;
}
LOG_DBG("[SENSOR NOTIFICATION] data %p length %u", data, length);
if (length < offsetof(struct sensor_event, channel_data)) {
LOG_WRN("Ignoring sensor notify with insufficient data length (%d)", length);
return BT_GATT_ITER_STOP;
}
struct sensor_event sensor_event;
memcpy(&sensor_event, data, MIN(length, sizeof(sensor_event)));
if (sensor_event.channel_data_size != 1) {
return BT_GATT_ITER_STOP;
}
struct peripheral_event_wrapper event_wrapper = {
.source = peripheral_slot_index_for_conn(conn),
.event = {.type = ZMK_SPLIT_TRANSPORT_PERIPHERAL_EVENT_TYPE_SENSOR_EVENT,
.data = {.sensor_event = {
.channel_data = sensor_event.channel_data[0],
.sensor_index = sensor_event.sensor_index,
}}}};
k_msgq_put(&peripheral_event_msgq, &event_wrapper, K_NO_WAIT);
k_work_submit(&peripheral_event_work);
return BT_GATT_ITER_CONTINUE;
}
#endif /* ZMK_KEYMAP_HAS_SENSORS */
#if IS_ENABLED(CONFIG_ZMK_INPUT_SPLIT)
static uint8_t peripheral_input_event_notify_cb(struct bt_conn *conn,
struct bt_gatt_subscribe_params *params,
const void *data, uint16_t length) {
if (!data) {
LOG_DBG("[UNSUBSCRIBED]");
params->value_handle = 0U;
return BT_GATT_ITER_STOP;
}
LOG_DBG("[INPUT EVENT] data %p length %u", data, length);
if (length != sizeof(struct zmk_split_input_event_payload)) {
LOG_WRN("Ignoring input event notify with incorrect data length (%d)", length);
return BT_GATT_ITER_STOP;
}
struct zmk_split_input_event_payload payload;
memcpy(&payload, data, MIN(length, sizeof(struct zmk_split_input_event_payload)));
for (size_t i = 0; i < ARRAY_SIZE(peripheral_input_slots); i++) {
if (&peripheral_input_slots[i].sub == params) {
struct peripheral_event_wrapper event_wrapper = {
.source = peripheral_slot_index_for_conn(conn),
.event = {.type = ZMK_SPLIT_TRANSPORT_PERIPHERAL_EVENT_TYPE_INPUT_EVENT,
.data = {.input_event = {
.reg = peripheral_input_slots[i].reg,
.sync = payload.sync,
.code = payload.code,
.type = payload.type,
.value = payload.value,
}}}};
k_msgq_put(&peripheral_event_msgq, &event_wrapper, K_NO_WAIT);
k_work_submit(&peripheral_event_work);
break;
}
}
return BT_GATT_ITER_CONTINUE;
}
#endif
static uint8_t split_central_notify_func(struct bt_conn *conn,
struct bt_gatt_subscribe_params *params, const void *data,
uint16_t length) {
struct peripheral_slot *slot = peripheral_slot_for_conn(conn);
if (slot == NULL) {
LOG_ERR("No peripheral state found for connection");
return BT_GATT_ITER_CONTINUE;
}
if (!data) {
LOG_DBG("[UNSUBSCRIBED]");
params->value_handle = 0U;
return BT_GATT_ITER_STOP;
}
LOG_DBG("[NOTIFICATION] data %p length %u", data, length);
for (int i = 0; i < POSITION_STATE_DATA_LEN; i++) {
slot->changed_positions[i] = ((uint8_t *)data)[i] ^ slot->position_state[i];
slot->position_state[i] = ((uint8_t *)data)[i];
}
LOG_HEXDUMP_DBG(slot->position_state, POSITION_STATE_DATA_LEN, "data");
for (int i = 0; i < POSITION_STATE_DATA_LEN; i++) {
for (int j = 0; j < 8; j++) {
if (slot->changed_positions[i] & BIT(j)) {
uint32_t position = (i * 8) + j;
bool pressed = slot->position_state[i] & BIT(j);
struct peripheral_event_wrapper ev = {
.source = peripheral_slot_index_for_conn(conn),
.event = {.type = ZMK_SPLIT_TRANSPORT_PERIPHERAL_EVENT_TYPE_KEY_POSITION_EVENT,
.data = {.key_position_event = {
.position = position,
.pressed = pressed,
}}}};
k_msgq_put(&peripheral_event_msgq, &ev, K_NO_WAIT);
k_work_submit(&peripheral_event_work);
}
}
}
return BT_GATT_ITER_CONTINUE;
}
#if IS_ENABLED(CONFIG_ZMK_SPLIT_BLE_CENTRAL_BATTERY_LEVEL_FETCHING)
static uint8_t split_central_battery_level_notify_func(struct bt_conn *conn,
struct bt_gatt_subscribe_params *params,
const void *data, uint16_t length) {
struct peripheral_slot *slot = peripheral_slot_for_conn(conn);
if (!slot) {
LOG_ERR("No peripheral state found for connection");
return BT_GATT_ITER_CONTINUE;
}
if (!data) {
LOG_DBG("[UNSUBSCRIBED]");
params->value_handle = 0U;
return BT_GATT_ITER_STOP;
}
if (length == 0) {
LOG_ERR("Zero length battery notification received");
return BT_GATT_ITER_CONTINUE;
}
LOG_DBG("[BATTERY LEVEL NOTIFICATION] data %p length %u", data, length);
uint8_t battery_level = ((uint8_t *)data)[0];
LOG_DBG("Battery level: %u", battery_level);
struct peripheral_event_wrapper ev = {
.source = peripheral_slot_index_for_conn(conn),
.event = {.type = ZMK_SPLIT_TRANSPORT_PERIPHERAL_EVENT_TYPE_BATTERY_EVENT,
.data = {.battery_event = {
.level = battery_level,
}}}};
k_msgq_put(&peripheral_event_msgq, &ev, K_NO_WAIT);
k_work_submit(&peripheral_event_work);
return BT_GATT_ITER_CONTINUE;
}
static uint8_t split_central_battery_level_read_func(struct bt_conn *conn, uint8_t err,
struct bt_gatt_read_params *params,
const void *data, uint16_t length) {
if (err > 0) {
LOG_ERR("Error during reading peripheral battery level: %u", err);
return BT_GATT_ITER_STOP;
}
struct peripheral_slot *slot = peripheral_slot_for_conn(conn);
if (!slot) {
LOG_ERR("No peripheral state found for connection");
return BT_GATT_ITER_CONTINUE;
}
if (!data) {
LOG_DBG("[READ COMPLETED]");
return BT_GATT_ITER_STOP;
}
LOG_DBG("[BATTERY LEVEL READ] data %p length %u", data, length);
if (length == 0) {
LOG_ERR("Zero length battery notification received");
return BT_GATT_ITER_CONTINUE;
}
uint8_t battery_level = ((uint8_t *)data)[0];
LOG_DBG("Battery level: %u", battery_level);
struct peripheral_event_wrapper ev = {
.source = peripheral_slot_index_for_conn(conn),
.event = {.type = ZMK_SPLIT_TRANSPORT_PERIPHERAL_EVENT_TYPE_BATTERY_EVENT,
.data = {.battery_event = {
.level = battery_level,
}}}};
k_msgq_put(&peripheral_event_msgq, &ev, K_NO_WAIT);
k_work_submit(&peripheral_event_work);
return BT_GATT_ITER_CONTINUE;
}
#endif /* IS_ENABLED(CONFIG_ZMK_SPLIT_BLE_CENTRAL_BATTERY_LEVEL_FETCHING) */
static int split_central_subscribe(struct bt_conn *conn, struct bt_gatt_subscribe_params *params) {
atomic_set(params->flags, BT_GATT_SUBSCRIBE_FLAG_NO_RESUB);
int err = bt_gatt_subscribe(conn, params);
switch (err) {
case -EALREADY:
LOG_DBG("[ALREADY SUBSCRIBED]");
break;
case 0:
LOG_DBG("[SUBSCRIBED]");
break;
default:
LOG_ERR("Subscribe failed (err %d)", err);
break;
}
return err;
}
static int update_peripheral_selected_layout(struct peripheral_slot *slot, uint8_t layout_idx) {
if (slot->state != PERIPHERAL_SLOT_STATE_CONNECTED) {
return -ENOTCONN;
}
if (slot->selected_physical_layout_handle == 0) {
// It appears that sometimes the peripheral is considered connected
// before the GATT characteristics have been discovered. If this is
// the case, the selected_physical_layout_handle will not yet be set.
return -EAGAIN;
}
if (bt_conn_get_security(slot->conn) < BT_SECURITY_L2) {
return -EAGAIN;
}
int err = bt_gatt_write_without_response(slot->conn, slot->selected_physical_layout_handle,
&layout_idx, sizeof(layout_idx), true);
if (err < 0) {
LOG_ERR("Failed to write physical layout index to peripheral (err %d)", err);
}
return err;
}
static void update_peripherals_selected_physical_layout(struct k_work *_work) {
uint8_t layout_idx = zmk_physical_layouts_get_selected();
for (int i = 0; i < ZMK_SPLIT_BLE_PERIPHERAL_COUNT; i++) {
if (peripherals[i].state != PERIPHERAL_SLOT_STATE_CONNECTED) {
continue;
}
update_peripheral_selected_layout(&peripherals[i], layout_idx);
}
}
K_WORK_DEFINE(update_peripherals_selected_layouts_work,
update_peripherals_selected_physical_layout);
static uint8_t split_central_chrc_discovery_func(struct bt_conn *conn,
const struct bt_gatt_attr *attr,
struct bt_gatt_discover_params *params) {
if (!attr) {
LOG_DBG("Discover complete");
return BT_GATT_ITER_STOP;
}
if (!attr->user_data) {
LOG_ERR("Required user data not passed to discovery");
return BT_GATT_ITER_STOP;
}
struct peripheral_slot *slot = peripheral_slot_for_conn(conn);
if (slot == NULL) {
LOG_ERR("No peripheral state found for connection");
return BT_GATT_ITER_STOP;
}
LOG_DBG("[ATTRIBUTE] handle %u", attr->handle);
switch (params->type) {
case BT_GATT_DISCOVER_CHARACTERISTIC: {
const struct bt_uuid *chrc_uuid = ((struct bt_gatt_chrc *)attr->user_data)->uuid;
if (bt_uuid_cmp(chrc_uuid, BT_UUID_DECLARE_128(ZMK_SPLIT_BT_CHAR_POSITION_STATE_UUID)) ==
0) {
LOG_DBG("Found position state characteristic");
slot->subscribe_params.disc_params = &slot->sub_discover_params;
slot->subscribe_params.end_handle = slot->discover_params.end_handle;
slot->subscribe_params.value_handle = bt_gatt_attr_value_handle(attr);
slot->subscribe_params.notify = split_central_notify_func;
slot->subscribe_params.value = BT_GATT_CCC_NOTIFY;
split_central_subscribe(conn, &slot->subscribe_params);
#if ZMK_KEYMAP_HAS_SENSORS
} else if (bt_uuid_cmp(chrc_uuid,
BT_UUID_DECLARE_128(ZMK_SPLIT_BT_CHAR_SENSOR_STATE_UUID)) == 0) {
slot->discover_params.uuid = NULL;
slot->discover_params.start_handle = attr->handle + 2;
slot->discover_params.type = BT_GATT_DISCOVER_CHARACTERISTIC;
slot->sensor_subscribe_params.disc_params = &slot->sub_discover_params;
slot->sensor_subscribe_params.end_handle = slot->discover_params.end_handle;
slot->sensor_subscribe_params.value_handle = bt_gatt_attr_value_handle(attr);
slot->sensor_subscribe_params.notify = split_central_sensor_notify_func;
slot->sensor_subscribe_params.value = BT_GATT_CCC_NOTIFY;
split_central_subscribe(conn, &slot->sensor_subscribe_params);
#endif /* ZMK_KEYMAP_HAS_SENSORS */
#if IS_ENABLED(CONFIG_ZMK_INPUT_SPLIT)
} else if (bt_uuid_cmp(chrc_uuid, BT_UUID_DECLARE_128(ZMK_SPLIT_BT_INPUT_EVENT_UUID)) ==
0) {
LOG_DBG("Found an input characteristic");
struct peripheral_input_slot *input_slot;
int ret = reserve_next_open_input_slot(&input_slot, conn);
if (ret < 0) {
LOG_WRN("No available slot for peripheral input subscriptions (%d)", ret);
slot->discover_params.uuid = NULL;
slot->discover_params.start_handle = attr->handle + 1;
slot->discover_params.type = BT_GATT_DISCOVER_CHARACTERISTIC;
} else {
LOG_DBG("Reserved a slot for the input subscription");
input_slot->sub.value_handle = bt_gatt_attr_value_handle(attr);
slot->discover_params.uuid = gatt_ccc_uuid;
slot->discover_params.start_handle = attr->handle;
slot->discover_params.type = BT_GATT_DISCOVER_STD_CHAR_DESC;
}
#endif // IS_ENABLED(CONFIG_ZMK_INPUT_SPLIT)
} else if (bt_uuid_cmp(chrc_uuid,
BT_UUID_DECLARE_128(ZMK_SPLIT_BT_CHAR_RUN_BEHAVIOR_UUID)) == 0) {
LOG_DBG("Found run behavior handle");
slot->discover_params.uuid = NULL;
slot->discover_params.start_handle = attr->handle + 2;
slot->run_behavior_handle = bt_gatt_attr_value_handle(attr);
} else if (!bt_uuid_cmp(((struct bt_gatt_chrc *)attr->user_data)->uuid,
BT_UUID_DECLARE_128(ZMK_SPLIT_BT_SELECT_PHYS_LAYOUT_UUID))) {
LOG_DBG("Found select physical layout handle");
slot->selected_physical_layout_handle = bt_gatt_attr_value_handle(attr);
k_work_submit(&update_peripherals_selected_layouts_work);
#if IS_ENABLED(CONFIG_ZMK_SPLIT_PERIPHERAL_HID_INDICATORS)
} else if (!bt_uuid_cmp(((struct bt_gatt_chrc *)attr->user_data)->uuid,
BT_UUID_DECLARE_128(ZMK_SPLIT_BT_UPDATE_HID_INDICATORS_UUID))) {
LOG_DBG("Found update HID indicators handle");
slot->update_hid_indicators = bt_gatt_attr_value_handle(attr);
#endif // IS_ENABLED(CONFIG_ZMK_SPLIT_PERIPHERAL_HID_INDICATORS)
} else if (!bt_uuid_cmp(((struct bt_gatt_chrc *)attr->user_data)->uuid,
BT_UUID_DECLARE_128(ZMK_SPLIT_BT_UPDATE_LAYERS_UUID))) {
LOG_DBG("Found update Layers handle");
slot->update_layers_handle = bt_gatt_attr_value_handle(attr);
#if IS_ENABLED(CONFIG_ZMK_SPLIT_BLE_CENTRAL_BATTERY_LEVEL_FETCHING)
} else if (!bt_uuid_cmp(((struct bt_gatt_chrc *)attr->user_data)->uuid,
BT_UUID_BAS_BATTERY_LEVEL)) {
LOG_DBG("Found battery level characteristics");
slot->batt_lvl_subscribe_params.disc_params = &slot->sub_discover_params;
slot->batt_lvl_subscribe_params.end_handle = slot->discover_params.end_handle;
slot->batt_lvl_subscribe_params.value_handle = bt_gatt_attr_value_handle(attr);
slot->batt_lvl_subscribe_params.notify = split_central_battery_level_notify_func;
slot->batt_lvl_subscribe_params.value = BT_GATT_CCC_NOTIFY;
split_central_subscribe(conn, &slot->batt_lvl_subscribe_params);
slot->batt_lvl_read_params.func = split_central_battery_level_read_func;
slot->batt_lvl_read_params.handle_count = 1;
slot->batt_lvl_read_params.single.handle = bt_gatt_attr_value_handle(attr);
slot->batt_lvl_read_params.single.offset = 0;
bt_gatt_read(conn, &slot->batt_lvl_read_params);
#endif /* IS_ENABLED(CONFIG_ZMK_SPLIT_BLE_CENTRAL_BATTERY_LEVEL_FETCHING) */
}
break;
}
case BT_GATT_DISCOVER_STD_CHAR_DESC:
#if IS_ENABLED(CONFIG_ZMK_INPUT_SPLIT)
if (bt_uuid_cmp(slot->discover_params.uuid, BT_UUID_GATT_CCC) == 0) {
LOG_DBG("Found input CCC descriptor");
struct peripheral_input_slot *input_slot;
int ret = find_pending_input_slot(&input_slot, conn);
if (ret < 0) {
LOG_DBG("No pending input slot (%d)", ret);
slot->discover_params.uuid = NULL;
slot->discover_params.start_handle = attr->handle + 1;
slot->discover_params.type = BT_GATT_DISCOVER_CHARACTERISTIC;
} else {
LOG_DBG("Found pending input slot");
input_slot->sub.ccc_handle = attr->handle;
slot->discover_params.uuid = gatt_cpf_uuid;
slot->discover_params.start_handle = attr->handle + 1;
slot->discover_params.type = BT_GATT_DISCOVER_STD_CHAR_DESC;
}
} else if (bt_uuid_cmp(slot->discover_params.uuid, BT_UUID_GATT_CPF) == 0) {
LOG_DBG("Found input CPF descriptor");
struct bt_gatt_cpf *cpf = attr->user_data;
struct peripheral_input_slot *input_slot;
int ret = find_pending_input_slot(&input_slot, conn);
if (ret < 0) {
LOG_DBG("No pending input slot (%d)", ret);
} else {
LOG_DBG("Found pending input slot");
input_slot->reg = cpf->description;
input_slot->sub.notify = peripheral_input_event_notify_cb;
input_slot->sub.value = BT_GATT_CCC_NOTIFY;
int err = split_central_subscribe(conn, &input_slot->sub);
if (err < 0) {
LOG_WRN("Failed to subscribe to input notifications %d", err);
}
}
slot->discover_params.uuid = NULL;
slot->discover_params.start_handle = attr->handle + 1;
slot->discover_params.type = BT_GATT_DISCOVER_CHARACTERISTIC;
}
#endif // IS_ENABLED(CONFIG_ZMK_INPUT_SPLIT)
break;
}
bool subscribed = slot->run_behavior_handle && slot->subscribe_params.value_handle &&
slot->selected_physical_layout_handle;
#if ZMK_KEYMAP_HAS_SENSORS
subscribed = subscribed && slot->sensor_subscribe_params.value_handle;
#endif /* ZMK_KEYMAP_HAS_SENSORS */
#if IS_ENABLED(CONFIG_ZMK_SPLIT_PERIPHERAL_HID_INDICATORS)
subscribed = subscribed && slot->update_hid_indicators;
#endif // IS_ENABLED(CONFIG_ZMK_SPLIT_PERIPHERAL_HID_INDICATORS)
#if IS_ENABLED(CONFIG_ZMK_SPLIT_BLE_CENTRAL_BATTERY_LEVEL_FETCHING)
subscribed = subscribed && slot->batt_lvl_subscribe_params.value_handle;
#endif /* IS_ENABLED(CONFIG_ZMK_SPLIT_BLE_CENTRAL_BATTERY_LEVEL_FETCHING) */
#if IS_ENABLED(CONFIG_ZMK_INPUT_SPLIT)
for (size_t i = 0; i < ARRAY_SIZE(peripheral_input_slots); i++) {
if (input_slot_is_open(i) || input_slot_is_pending(i)) {
subscribed = false;
break;
}
}
#endif // IS_ENABLED(CONFIG_ZMK_INPUT_SPLIT)
subscribed = subscribed && slot->update_layers_handle;
return subscribed ? BT_GATT_ITER_STOP : BT_GATT_ITER_CONTINUE;
}
static uint8_t split_central_service_discovery_func(struct bt_conn *conn,
const struct bt_gatt_attr *attr,
struct bt_gatt_discover_params *params) {
if (!attr) {
LOG_DBG("Discover complete");
(void)memset(params, 0, sizeof(*params));
return BT_GATT_ITER_STOP;
}
LOG_DBG("[ATTRIBUTE] handle %u", attr->handle);
struct peripheral_slot *slot = peripheral_slot_for_conn(conn);
if (slot == NULL) {
LOG_ERR("No peripheral state found for connection");
return BT_GATT_ITER_STOP;
}
if (bt_uuid_cmp(slot->discover_params.uuid, BT_UUID_DECLARE_128(ZMK_SPLIT_BT_SERVICE_UUID)) !=
0) {
LOG_DBG("Found other service");
return BT_GATT_ITER_CONTINUE;
}
LOG_DBG("Found split service");
slot->discover_params.uuid = NULL;
slot->discover_params.func = split_central_chrc_discovery_func;
slot->discover_params.type = BT_GATT_DISCOVER_CHARACTERISTIC;
int err = bt_gatt_discover(conn, &slot->discover_params);
if (err) {
LOG_ERR("Failed to start discovering split service characteristics (err %d)", err);
}
return BT_GATT_ITER_STOP;
}
static void split_central_process_connection(struct bt_conn *conn) {
int err;
LOG_DBG("Current security for connection: %d", bt_conn_get_security(conn));
struct peripheral_slot *slot = peripheral_slot_for_conn(conn);
if (slot == NULL) {
LOG_ERR("No peripheral state found for connection");
return;
}
if (!slot->subscribe_params.value_handle) {
slot->discover_params.uuid = &split_service_uuid.uuid;
slot->discover_params.func = split_central_service_discovery_func;
slot->discover_params.start_handle = 0x0001;
slot->discover_params.end_handle = 0xffff;
slot->discover_params.type = BT_GATT_DISCOVER_PRIMARY;
err = bt_gatt_discover(slot->conn, &slot->discover_params);
if (err) {
LOG_ERR("Discover failed(err %d)", err);
return;
}
}
struct bt_conn_info info;
bt_conn_get_info(conn, &info);
LOG_DBG("New connection params: Interval: %d, Latency: %d, PHY: %d", info.le.interval,
info.le.latency, info.le.phy->rx_phy);
// Restart scanning if necessary.
start_scanning();
}
static int stop_scanning(void) {
LOG_DBG("Stopping peripheral scanning");
is_scanning = false;
int err = bt_le_scan_stop();
if (err < 0) {
LOG_ERR("Stop LE scan failed (err %d)", err);
return err;
}
return 0;
}
static bool split_central_eir_found(const bt_addr_le_t *addr) {
LOG_DBG("Found the split service");
// Reserve peripheral slot. Once the central has bonded to its peripherals,
// the peripheral MAC addresses will be validated internally and the slot
// reservation will fail if there is a mismatch.
int slot_idx = reserve_peripheral_slot(addr);
if (slot_idx < 0) {
LOG_INF("Unable to reserve peripheral slot (err %d)", slot_idx);
return false;
}
struct peripheral_slot *slot = &peripherals[slot_idx];
// Stop scanning so we can connect to the peripheral device.
int err = stop_scanning();
if (err < 0) {
return false;
}
LOG_DBG("Initiating new connection");
struct bt_le_conn_param *param =
BT_LE_CONN_PARAM(CONFIG_ZMK_SPLIT_BLE_PREF_INT, CONFIG_ZMK_SPLIT_BLE_PREF_INT,
CONFIG_ZMK_SPLIT_BLE_PREF_LATENCY, CONFIG_ZMK_SPLIT_BLE_PREF_TIMEOUT);
err = bt_conn_le_create(addr, BT_CONN_LE_CREATE_CONN, param, &slot->conn);
if (err < 0) {
LOG_ERR("Create conn failed (err %d) (create conn? 0x%04x)", err, BT_HCI_OP_LE_CREATE_CONN);
release_peripheral_slot(slot_idx);
start_scanning();
}
return false;
}
static bool split_central_eir_parse(struct bt_data *data, void *user_data) {
bt_addr_le_t *addr = user_data;
int i;
LOG_DBG("[AD]: %u data_len %u", data->type, data->data_len);
switch (data->type) {
case BT_DATA_UUID128_SOME:
case BT_DATA_UUID128_ALL:
if (data->data_len % 16 != 0U) {
LOG_ERR("AD malformed");
return true;
}
for (i = 0; i < data->data_len; i += 16) {
struct bt_uuid_128 uuid;
if (!bt_uuid_create(&uuid.uuid, &data->data[i], 16)) {
LOG_ERR("Unable to load UUID");
continue;
}
if (bt_uuid_cmp(&uuid.uuid, BT_UUID_DECLARE_128(ZMK_SPLIT_BT_SERVICE_UUID)) != 0) {
char uuid_str[BT_UUID_STR_LEN];
char service_uuid_str[BT_UUID_STR_LEN];
bt_uuid_to_str(&uuid.uuid, uuid_str, sizeof(uuid_str));
bt_uuid_to_str(BT_UUID_DECLARE_128(ZMK_SPLIT_BT_SERVICE_UUID), service_uuid_str,
sizeof(service_uuid_str));
LOG_DBG("UUID %s does not match split UUID: %s", uuid_str, service_uuid_str);
continue;
}
return split_central_eir_found(addr);
}
}
return true;
}
static void split_central_device_found(const bt_addr_le_t *addr, int8_t rssi, uint8_t type,
struct net_buf_simple *ad) {
char dev[BT_ADDR_LE_STR_LEN];
bt_addr_le_to_str(addr, dev, sizeof(dev));
LOG_DBG("[DEVICE]: %s, AD evt type %u, AD data len %u, RSSI %i", dev, type, ad->len, rssi);
/* We're only interested in connectable events */
if (type == BT_GAP_ADV_TYPE_ADV_IND) {
bt_data_parse(ad, split_central_eir_parse, (void *)addr);
} else if (type == BT_GAP_ADV_TYPE_ADV_DIRECT_IND) {
split_central_eir_found(addr);
}
}
static int start_scanning(void) {
if (!is_enabled) {
LOG_DBG("Not scanning, we're disabled");
return 0;
}
// No action is necessary if central is already scanning.
if (is_scanning) {
LOG_DBG("Scanning already running");
return 0;
}
// If all the devices are connected, there is no need to scan.
bool has_unconnected = false;
for (int i = 0; i < CONFIG_ZMK_SPLIT_BLE_CENTRAL_PERIPHERALS; i++) {
if (peripherals[i].conn == NULL) {
has_unconnected = true;
break;
}
}
if (!has_unconnected) {
LOG_DBG("All devices are connected, scanning is unnecessary");
return 0;
}
// Start scanning otherwise.
is_scanning = true;
int err = bt_le_scan_start(BT_LE_SCAN_PASSIVE, split_central_device_found);
if (err < 0) {
LOG_ERR("Scanning failed to start (err %d)", err);
return err;
}
LOG_DBG("Scanning successfully started");
return 0;
}
static void split_central_connected(struct bt_conn *conn, uint8_t conn_err) {
char addr[BT_ADDR_LE_STR_LEN];
struct bt_conn_info info;
bt_addr_le_to_str(bt_conn_get_dst(conn), addr, sizeof(addr));
bt_conn_get_info(conn, &info);
if (info.role != BT_CONN_ROLE_CENTRAL) {
LOG_DBG("SKIPPING FOR ROLE %d", info.role);
return;
}
if (conn_err) {
LOG_ERR("Failed to connect to %s (%u)", addr, conn_err);
release_peripheral_slot_for_conn(conn);
start_scanning();
return;
}
LOG_DBG("Connected: %s", addr);
confirm_peripheral_slot_conn(conn);
split_central_process_connection(conn);
k_work_submit(&notify_status_work);
}
static void split_central_disconnected(struct bt_conn *conn, uint8_t reason) {
char addr[BT_ADDR_LE_STR_LEN];
int err;
bt_addr_le_to_str(bt_conn_get_dst(conn), addr, sizeof(addr));
LOG_DBG("Disconnected: %s (reason %d)", addr, reason);
#if IS_ENABLED(CONFIG_ZMK_SPLIT_BLE_CENTRAL_BATTERY_LEVEL_FETCHING)
struct peripheral_event_wrapper ev = {
.source = peripheral_slot_index_for_conn(conn),
.event = {.type = ZMK_SPLIT_TRANSPORT_PERIPHERAL_EVENT_TYPE_BATTERY_EVENT,
.data = {.battery_event = {
.level = 0,
}}}};
k_msgq_put(&peripheral_event_msgq, &ev, K_NO_WAIT);
k_work_submit(&peripheral_event_work);
#endif // IS_ENABLED(CONFIG_ZMK_SPLIT_BLE_CENTRAL_BATTERY_LEVEL_FETCHING)
#if IS_ENABLED(CONFIG_ZMK_INPUT_SPLIT)
release_peripheral_input_subs(conn);
#endif
err = release_peripheral_slot_for_conn(conn);
if (err < 0) {
LOG_WRN("Failed to release peripheral slot (%d)", err);
}
k_work_submit(&notify_status_work);
start_scanning();
}
static void split_central_security_changed(struct bt_conn *conn, bt_security_t level,
enum bt_security_err err) {
struct peripheral_slot *slot = peripheral_slot_for_conn(conn);
if (!slot || !slot->selected_physical_layout_handle) {
return;
}
if (err > 0) {
LOG_DBG("Skipping updating the physical layout for peripheral with security error");
return;
}
if (level < BT_SECURITY_L2) {
LOG_DBG("Skipping updating the physical layout for peripheral with insufficient security");
return;
}
k_work_submit(&update_peripherals_selected_layouts_work);
}
static struct bt_conn_cb conn_callbacks = {
.connected = split_central_connected,
.disconnected = split_central_disconnected,
.security_changed = split_central_security_changed,
};
K_THREAD_STACK_DEFINE(split_central_split_run_q_stack,
CONFIG_ZMK_SPLIT_BLE_CENTRAL_SPLIT_RUN_STACK_SIZE);
struct k_work_q split_central_split_run_q;
struct central_cmd_wrapper {
uint8_t source;
struct zmk_split_transport_central_command cmd;
};
K_MSGQ_DEFINE(zmk_split_central_split_run_msgq, sizeof(struct central_cmd_wrapper),
CONFIG_ZMK_SPLIT_BLE_CENTRAL_SPLIT_RUN_QUEUE_SIZE, 4);
void split_central_split_run_callback(struct k_work *work) {
struct central_cmd_wrapper payload_wrapper;
int err;
LOG_DBG("");
while (k_msgq_get(&zmk_split_central_split_run_msgq, &payload_wrapper, K_NO_WAIT) == 0) {
if (peripherals[payload_wrapper.source].state != PERIPHERAL_SLOT_STATE_CONNECTED) {
LOG_ERR("Source not connected");
continue;
}
switch (payload_wrapper.cmd.type) {
case ZMK_SPLIT_TRANSPORT_CENTRAL_CMD_TYPE_INVOKE_BEHAVIOR: {
if (!peripherals[payload_wrapper.source].run_behavior_handle) {
LOG_ERR("Run behavior handle not found");
continue;
}
struct zmk_split_run_behavior_payload payload = {
.data = {
.param1 = payload_wrapper.cmd.data.invoke_behavior.param1,
.param2 = payload_wrapper.cmd.data.invoke_behavior.param2,
.position = payload_wrapper.cmd.data.invoke_behavior.position,
.source = payload_wrapper.cmd.data.invoke_behavior.event_source,
.state = payload_wrapper.cmd.data.invoke_behavior.state ? 1 : 0,
}};
const size_t payload_dev_size = sizeof(payload.behavior_dev);
if (strlcpy(payload.behavior_dev, payload_wrapper.cmd.data.invoke_behavior.behavior_dev,
payload_dev_size) >= payload_dev_size) {
LOG_ERR("Truncated behavior label %s to %s before invoking peripheral behavior",
payload_wrapper.cmd.data.invoke_behavior.behavior_dev,
payload.behavior_dev);
}
err = bt_gatt_write_without_response(
peripherals[payload_wrapper.source].conn,
peripherals[payload_wrapper.source].run_behavior_handle, &payload,
sizeof(struct zmk_split_run_behavior_payload), true);
if (err) {
LOG_ERR("Failed to write the behavior characteristic (err %d)", err);
}
break;
}
case ZMK_SPLIT_TRANSPORT_CENTRAL_CMD_TYPE_SET_PHYSICAL_LAYOUT:
update_peripheral_selected_layout(
&peripherals[payload_wrapper.source],
payload_wrapper.cmd.data.set_physical_layout.layout_idx);
break;
#if IS_ENABLED(CONFIG_ZMK_SPLIT_PERIPHERAL_HID_INDICATORS)
case ZMK_SPLIT_TRANSPORT_CENTRAL_CMD_TYPE_SET_HID_INDICATORS:
LOG_WRN("do the indicators dance");
if (peripherals[payload_wrapper.source].update_hid_indicators == 0) {
// It appears that sometimes the peripheral is considered connected
// before the GATT characteristics have been discovered. If this is
// the case, the update_hid_indicators handle will not yet be set.
LOG_WRN("NO HANDLE TO SET ON PERIPHERAL");
break;
}
err = bt_gatt_write_without_response(
peripherals[payload_wrapper.source].conn,
peripherals[payload_wrapper.source].update_hid_indicators,
&payload_wrapper.cmd.data.set_hid_indicators.indicators,
sizeof(payload_wrapper.cmd.data.set_hid_indicators.indicators), true);
if (err) {
LOG_ERR("Failed to write HID indicator characteristic (err %d)", err);
}
break;
#endif // IS_ENABLED(CONFIG_ZMK_SPLIT_PERIPHERAL_HID_INDICATORS)
case ZMK_SPLIT_TRANSPORT_CENTRAL_CMD_TYPE_SET_RGB_LAYERS:
err = bt_gatt_write_without_response(
peripherals[payload_wrapper.source].conn,
peripherals[payload_wrapper.source].update_layers_handle,
&payload_wrapper.cmd.data.set_rgb_layers.layers,
sizeof(payload_wrapper.cmd.data.set_rgb_layers.layers), true);
if (err) {
LOG_ERR("Failed to send layers to peripheral (err %d)", err);
}
break;
default:
LOG_WRN("Unsupported wrapped central command type %d", payload_wrapper.cmd.type);
return;
}
}
}
K_WORK_DEFINE(split_central_split_run_work, split_central_split_run_callback);
static int split_bt_invoke_behavior_payload(struct central_cmd_wrapper payload_wrapper) {
LOG_DBG("");
int err = k_msgq_put(&zmk_split_central_split_run_msgq, &payload_wrapper, K_MSEC(100));
if (err) {
switch (err) {
case -EAGAIN: {
LOG_WRN("Run command message queue full, popping first message and queueing again");
struct central_cmd_wrapper discarded_report;
k_msgq_get(&zmk_split_central_split_run_msgq, &discarded_report, K_NO_WAIT);
return split_bt_invoke_behavior_payload(payload_wrapper);
}
default:
LOG_WRN("Failed to queue behavior to send (%d)", err);
return err;
}
}
k_work_submit_to_queue(&split_central_split_run_q, &split_central_split_run_work);
return 0;
};
static int finish_init();
static bool settings_loaded = false;
#if IS_ENABLED(CONFIG_SETTINGS)
static int central_ble_handle_set(const char *name, size_t len, settings_read_cb read_cb,
void *cb_arg) {
return 0;
}
static struct settings_handler ble_central_settings_handler = {
.name = "ble_central", .h_set = central_ble_handle_set, .h_commit = finish_init};
#endif // IS_ENABLED(CONFIG_SETTINGS)
static int zmk_split_bt_central_init(void) {
k_work_queue_start(&split_central_split_run_q, split_central_split_run_q_stack,
K_THREAD_STACK_SIZEOF(split_central_split_run_q_stack),
CONFIG_ZMK_BLE_THREAD_PRIORITY, NULL);
bt_conn_cb_register(&conn_callbacks);
#if IS_ENABLED(CONFIG_SETTINGS)
settings_register(&ble_central_settings_handler);
return 0;
#else
return finish_init();
#endif // IS_ENABLED(CONFIG_SETTINGS)
}
SYS_INIT(zmk_split_bt_central_init, APPLICATION, CONFIG_ZMK_BLE_INIT_PRIORITY);
static int zmk_split_bt_central_listener_cb(const zmk_event_t *eh) {
if (as_zmk_physical_layout_selection_changed(eh)) {
k_work_submit(&update_peripherals_selected_layouts_work);
}
return ZMK_EV_EVENT_BUBBLE;
}
ZMK_LISTENER(zmk_split_bt_central, zmk_split_bt_central_listener_cb);
ZMK_SUBSCRIPTION(zmk_split_bt_central, zmk_physical_layout_selection_changed);
static int split_central_bt_send_command(uint8_t source,
struct zmk_split_transport_central_command cmd) {
if (source >= ARRAY_SIZE(peripherals)) {
return -EINVAL;
}
switch (cmd.type) {
case ZMK_SPLIT_TRANSPORT_CENTRAL_CMD_TYPE_SET_RGB_LAYERS:
case ZMK_SPLIT_TRANSPORT_CENTRAL_CMD_TYPE_SET_HID_INDICATORS:
case ZMK_SPLIT_TRANSPORT_CENTRAL_CMD_TYPE_SET_PHYSICAL_LAYOUT:
case ZMK_SPLIT_TRANSPORT_CENTRAL_CMD_TYPE_INVOKE_BEHAVIOR: {
struct central_cmd_wrapper wrapper = {.source = source, .cmd = cmd};
return split_bt_invoke_behavior_payload(wrapper);
}
case ZMK_SPLIT_TRANSPORT_CENTRAL_CMD_TYPE_POLL_EVENTS:
return -ENOTSUP;
default:
return -ENOTSUP;
}
return 0;
}
static int split_central_bt_get_available_source_ids(uint8_t *sources) {
int count = 0;
for (int i = 0; i < ZMK_SPLIT_BLE_PERIPHERAL_COUNT; i++) {
if (peripherals[i].state != PERIPHERAL_SLOT_STATE_CONNECTED) {
continue;
}
sources[count++] = i;
}
return count;
}
static int split_central_bt_set_enabled(bool enabled) {
is_enabled = enabled;
if (enabled) {
return start_scanning();
} else {
int err = stop_scanning();
if (err < 0) {
LOG_WRN("Failed to stop scanning for peripherals (%d)", err);
}
for (int i = 0; i < ZMK_SPLIT_BLE_PERIPHERAL_COUNT; i++) {
if (peripherals[i].state != PERIPHERAL_SLOT_STATE_CONNECTED) {
continue;
}
err = bt_conn_disconnect(peripherals[i].conn, BT_HCI_ERR_REMOTE_USER_TERM_CONN);
if (err < 0) {
LOG_WRN("Failed to disconnect a peripheral (%d)", err);
}
}
return 0;
}
}
static int
split_central_bt_set_status_callback(zmk_split_transport_central_status_changed_cb_t cb) {
transport_status_cb = cb;
return 0;
}
static struct zmk_split_transport_status split_central_bt_get_status() {
uint8_t _source_ids[ZMK_SPLIT_BLE_PERIPHERAL_COUNT];
int count = split_central_bt_get_available_source_ids(_source_ids);
enum zmk_split_transport_connections_status conn_status;
if (count == 0) {
conn_status = ZMK_SPLIT_TRANSPORT_CONNECTIONS_STATUS_DISCONNECTED;
} else if (count == ZMK_SPLIT_BLE_PERIPHERAL_COUNT) {
conn_status = ZMK_SPLIT_TRANSPORT_CONNECTIONS_STATUS_ALL_CONNECTED;
} else {
conn_status = ZMK_SPLIT_TRANSPORT_CONNECTIONS_STATUS_SOME_CONNECTED;
}
return (struct zmk_split_transport_status){
.available = !IS_ENABLED(CONFIG_ZMK_BLE_CLEAR_BONDS_ON_START) && settings_loaded,
.enabled = is_enabled,
.connections = conn_status,
};
}
static const struct zmk_split_transport_central_api central_api = {
.send_command = split_central_bt_send_command,
.get_available_source_ids = split_central_bt_get_available_source_ids,
.set_enabled = split_central_bt_set_enabled,
.set_status_callback = split_central_bt_set_status_callback,
.get_status = split_central_bt_get_status,
};
ZMK_SPLIT_TRANSPORT_CENTRAL_REGISTER(bt_central, &central_api, CONFIG_ZMK_SPLIT_BLE_PRIORITY);
static void notify_transport_status(void) {
if (transport_status_cb) {
transport_status_cb(&bt_central, split_central_bt_get_status());
}
}
static int finish_init() {
settings_loaded = true;
if (!transport_status_cb) {
return 0;
}
return transport_status_cb(&bt_central, split_central_bt_get_status());
}
void peripheral_event_work_callback(struct k_work *work) {
struct peripheral_event_wrapper ev;
while (k_msgq_get(&peripheral_event_msgq, &ev, K_NO_WAIT) == 0) {
LOG_DBG("Trigger key position state change of type %d", ev.event.type);
zmk_split_transport_central_peripheral_event_handler(&bt_central, ev.source, ev.event);
}
}